
Do You Even Lift? Strengthening Compiler Security

Guarantees against Spectre Attacks
∗

XAVER FABIAN, CISPA Helmholtz Center for Information Security, Germany and University of Trento,
Italy
MARCO PATRIGNANI, University of Trento, Italy
MARCO GUARNIERI, IMDEA Software Institute, Spain
MICHAEL BACKES, CISPA Helmholtz Center for Information Security, Germany

Mainstream compilers implement different countermeasures to prevent specific classes of speculative execution
attacks. Unfortunately, these countermeasures either lack formal guarantees or come with proofs restricted to
speculative semantics capturing only a subset of the speculation mechanisms supported by modern CPUs,
thereby limiting their practical applicability. Ideally, these security proofs should target a speculative semantics
capturing the effects of all speculation mechanisms implemented in modern CPUs. However, this is impractical
and requires new secure compilation proofs to support additional speculation mechanisms.

In this paper, we address this problem by proposing a novel secure compilation framework that allows lifting
the security guarantees provided by Spectre countermeasures from weaker speculative semantics (ignoring
some speculation mechanisms) to stronger ones (accounting for the omitted mechanisms) without requiring
new secure compilation proofs. Using our lifting framework, we performed the most comprehensive security
analysis of Spectre countermeasures implemented in mainstream compilers to date. Our analysis spans 9
different countermeasures against 5 classes of Spectre attacks, which we proved secure against a speculative
semantics accounting for 5 different speculation mechanisms. Our analysis highlights that fence-based and
retpoline-based countermeasures can be securely lifted to the strongest speculative semantics under study.
In contrast, countermeasures based on speculative load hardening cannot be securely lifted to semantics
supporting indirect jump speculation.

CCS Concepts: • Security and privacy→ Formal security models; Systems security.

Additional Key Words and Phrases: Spectre; Speculative Execution; Secure Compilation

ACM Reference Format:
Xaver Fabian, Marco Patrignani, Marco Guarnieri, and Michael Backes. 2025. Do You Even Lift? Strength-
ening Compiler Security Guarantees against Spectre Attacks. Proc. ACM Program. Lang. 9, POPL, Article 31
(January 2025), 30 pages. https://doi.org/10.1145/3704867

1 Introduction

Spectre [39] and other speculative execution attacks exploit the fact that modern CPUs speculate
over the outcome of different instructions—branches [39], indirect jumps [39], stores and loads [35],
and returns [41]—to bypass software-level security checks and leak sensitive information.
∗This paper uses syntax highlighting accessible to both colourblind and black & white readers. For a better experience,
please print or view this in colour [47].

Authors’ Contact Information: Xaver Fabian, CISPA Helmholtz Center for Information Security, Saarbrücken, Germany
and University of Trento, Trento, Italy, xaver.fabian@cispa.de; Marco Patrignani, University of Trento, Trento, Italy,
marco.patrignani@unitn.it; Marco Guarnieri, IMDEA Software Institute, Madrid, Spain, marco.guarnieri@imdea.org;
Michael Backes, CISPA Helmholtz Center for Information Security, Saarbrücken, Germany, backes@cispa.de.

© 2025 Copyright held by the owner/author(s).
ACM 2475-1421/2025/1-ART31
https://doi.org/10.1145/3704867

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 31. Publication date: January 2025.

This work is licensed under a Creative Commons Attribution 4.0 International License.

HTTPS://ORCID.ORG/0009-0006-6342-4646
HTTPS://ORCID.ORG/0000-0003-3411-9678
HTTPS://ORCID.ORG/0000-0001-5767-555X
HTTPS://ORCID.ORG/0000-0002-7130-9211
https://doi.org/10.1145/3704867
https://orcid.org/0009-0006-6342-4646
https://orcid.org/0000-0003-3411-9678
https://orcid.org/0000-0001-5767-555X
https://orcid.org/0000-0002-7130-9211
https://doi.org/10.1145/3704867
https://creativecommons.org/licenses/by/4.0/

31:2 Xaver Fabian, Marco Patrignani, Marco Guarnieri, and Michael Backes

Tomitigate these attacks, mainstream compilers likeGcc and Clang implement countermeasures
in the form of secure compilation passes [14, 15, 36]. These passes modify a given program to
prevent specific classes of speculative leaks. Unfortunately, the majority of these countermeasures
lack formal security guarantees. Even countermeasures that come with formal security guarantees,
however, are proved secure against models (called speculative semantics) that only capture the
specific speculative leaks each countermeasure is designed to prevent. For instance, some Spectre-
PHT1 countermeasures have recently been proved secure [49] against a speculative semantics that
only models speculation over branch instructions.

Modern CPUs, however, employ a variety of speculation mechanisms which need to be accounted
for when reasoning about speculative leaks. This limits the practical applicability of existing
security proofs that focus on restricted classes of speculative leaks. For instance, the security
proofs from Patrignani and Guarnieri [49] ignore some speculation mechanisms (e.g., speculation
over memory disambiguation or indirect jumps) implemented in all mainstream CPUs, which
might compromise the proved guarantees. Unfortunately, extending security proofs to support
new speculation mechanisms is far from trivial since programs that are seemingly secure when
considering each speculation mechanism in isolation might still leak due to their interactions [24].
This has direct impact on existing security proofs: as we show in Section 5, the security guarantees
of speculative load hardening, a countermeasure implemented in the Clang compiler (and the
corresponding proof [49]), break when extending the underlying speculative semantics to support
speculation over indirect jumps.
Thus, establishing the security guarantees of any countermeasure ideally requires proving the

security of that countermeasure against attacker models capturing the effects of all speculation
mechanisms implemented in modern CPUs. This approach, however, is impractical: (1) it requires
developing new secure compilation proofs against stronger models (i.e., models accounting for
additional speculation mechanisms) for those countermeasures that have already been proved
secure against weaker models, and (2) it requires additional secure compilation proofs whenever a
new speculation mechanism is discovered from reverse engineering of existing CPUs.
In this paper, we address this problem by developing a formal framework that allows us to

precisely characterize when the security guarantees provided by Spectre countermeasures can be
lifted from weaker models (ignoring some speculation mechanism) to stronger ones (accounting
for the omitted mechanisms). This lifting allows us to account for further speculative mechanisms
without requiring new secure compilation proofs. Using our lifting framework, we performed a com-
prehensive security analysis of the Spectre countermeasures implemented in mainstream compilers,
which we proved secure against a speculative semantics accounting for all known speculation
mechanisms for which formal models exist. Concretely, we make the following contributions:
• We formalise two novel speculative semantics capturing speculation over indirect jumps [39]
(denoted as J) and straight-line speculation [7] (denoted as SLS). We present these novel
semantics alongside the formalisation of the language model we use in Section 2.
• We develop a new framework for reasoning about the security of compiler-level countermea-
sures against leaks induced by multiple speculation mechanisms (Section 3). This framework
integrates the core ideas from the composition framework from Fabian et al. [24] and from
the secure compilation framework from Patrignani and Guarnieri [49] to allow reasoning
about secure compilers against multiple speculative semantics. We equip our framework
with a precise notion of leakage ordering (inspired by the notion of hardware-software con-
tracts [30]) that precisely relates the information exposed by different speculative semantics,

1Spectre-PHT [39] refers to a class of speculative execution attacks exploiting speculation over branch instructions. Here,
PHT stands for “Pattern History Table”, one of the microarchitectural mechanisms responsible for branch speculation.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 31. Publication date: January 2025.

Do You Even Lift? Strengthening Compiler Security Guarantees against Spectre Attacks 31:3

where semantics supporting more speculation mechanisms are stronger with respect to our
ordering as they leak more. The integration of all these concepts required developing new
insights tailored for secure compilation, e.g., novel well-formedness conditions for composi-
tion, preservation of compiler security from composed semantics to components and from
stronger semantics to weaker ones.
• We precisely characterize under which conditions the security guarantees provided by a
compiler can be lifted from a base speculative semantics 𝑥 to a stronger semantics 𝑥+𝑦 ,
i.e., one that extends the base semantics 𝑥 to model the effects of additional speculation
mechanisms captured by the semantics 𝑦 (Section 4). Our lifting theorem (Theorem 4) states
that the guarantees provided by a secure compiler for the base semantics 𝑥 can be lifted to
the extended semantics 𝑥+𝑦 whenever three core properties are satisfied: Security in Origin
(i.e., the compiler is secure w.r.t. the base semantics 𝑥), Independence in Extension (i.e.,
the compiler does not introduce further leaks under the extension semantics 𝑦), and Safe
Nesting (i.e., there are no new leaks due to speculations arising only from the combination
of semantics 𝑥 and 𝑦). Finally, to simplify proving Independence and Safe Nesting, we
propose two sufficient conditions, Syntactic Independence and Trapped Speculation, that
provide the same guarantees with simpler proofs but under stricter constraints.
• Using our framework, we perform a comprehensive security analysis of Spectre countermea-
sures in mainstream compilers (Section 5). Our analysis spans 9 countermeasures against
5 different Spectre attacks: Spectre-PHT [39], Spectre-BTB [39], Spectre-STL [35], Spectre-
RSB [41, 43], and Spectre-SLS [7]. To the best of our knowledge, this is the most extensive
formal analysis of compiler countermeasures against speculative attacks to date (prior stud-
ies [49] are limited to Spectre-PHT countermeasures). As part of this analysis, we precisely
characterize the security guarantees of all countermeasures with respect to a combined
speculative semantics accounting for five different speculation mechanisms (all those for
which formal models exist). We remark that our lifting theorem (Theorem 4) is instrumental
in making our security analysis feasible since we use it to lift each countermeasure’s security
guarantees to all possible combined semantics without requiring new secure compilation
proofs, which significantly reduces the amount of secure compilation proofs needed.
Our security analysis highlights that:
– Countermeasures that block or trap speculation, i.e., fence-based [37, 38] and retpoline-
based [36] approaches, are the most secure—their security guarantees can be lifted to
the stronger speculative semantics we can model. Furthermore, lifting their guarantees is
“easy”: it can be done with minimal proof effort since Syntactic Independence and Trapped
Speculation can be used to simplify lifting proofs.

– Countermeasures that mask insecure values during speculation i.e., Speculative Load Hard-
ening [16] (SLH) and its variants [49, 59], require careful handling of the interactions
between masking code and different speculation mechanisms. For instance, we show that
the guarantees of SLH cannot be lifted to models supporting speculation over indirect
jumps, because the speculation flag (which tracks whether mispredictions are happening) is
not tracked correctly between jumps. Even when lifting is possible, lifting SLH guarantees
is more difficult than for the other countermeasures we analyzed since it requires full proofs
of Independence and Safe Nesting (the simpler sufficient conditions are not applicable).

• We mechanise the core results regarding our lifting framework (not those associated with
our security analysis) in the Coq proof assistant and indicate those theorems with .

The paper concludes with a discussion of the presented result (Section 6), related work (Section 7),
and conclusions (Section 8). For simplicity, we only discuss key aspects of our formal models here.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 31. Publication date: January 2025.

31:4 Xaver Fabian, Marco Patrignani, Marco Guarnieri, and Michael Backes

Events 𝜆 ::= 𝜖 | 𝛼? | 𝛼! | 𝛿 | Actions 𝛼 ::= (call 𝑓) | (ret)
𝜇arch. Acts. 𝛿 ::= store(n) | load(n) | pc(l) | startx | rlbx

Programs W , P ::= M, F, I Attackers A ::= M, F [·] Imports I ::= f

Functions F ::= ∅ | F ; 𝑓 ↦→ (𝑙𝑠𝑡𝑎𝑟𝑡 , 𝑐) Code c ::= 𝑛 : 𝑖 | 𝑐1; 𝑐2 Codebase C ::= F, I

Values 𝑣 ∈ Vals = N ∪ {⊥} Expressions 𝑒 ::= 𝑣 | 𝑥 | ⊖𝑒 | 𝑒1 ⊗ 𝑒2

Instructions 𝑖 ::= skip | 𝑥 ← 𝑒 | load 𝑥, 𝑒 | store 𝑥, 𝑒 | jmp 𝑒 | beqz 𝑥, 𝑙 | 𝑥 𝑒?←− 𝑒′ |
spbarr | call 𝑓 | ret | loadprv 𝑥, 𝑒 | storeprv 𝑥, 𝑒

Configurations 𝜎 ::= ⟨𝑝,𝑚, 𝑎⟩ Frames B ::= ∅ | n;𝐵
Prog. States Ω ::= 𝐶;𝐵;𝜎 RegisterFile a ::= ∅ | a;𝑥 ↦→ 𝑣

Registers 𝑥 ∈ Regs Memory m ::= ∅ | m;𝑛 ↦→ 𝑣 where 𝑛 ∈ Z

Fig. 1. Event Model, Static and Runtime Syntax

Full details and proofs can be found in the companion report [26]. The Coq development for the
mechanisation of the proofs is available at [25].

2 Language Formalisation: 𝜇Asm, Speculative Semantics, and Their Combinations

This section presents 𝜇Asm, an assembly-like language [31] that we extend with a notion of
components in order to identify the unit of compilation [49]. We use 𝜇Asm as a basis for our formal
framework and secure compilers.

First, we introduce the attacker model we consider (Section 2.1). Next, we present 𝜇Asm’s syntax
and non-speculative semantics first (Section 2.2), followed by the different speculative semantics
(Section 2.3). We then show how to combine different speculative semantics (Section 2.4) to account
for multiple sources of speculative leaks. Finally, we describe how different semantics can be
compared in terms of leaked information (Section 2.5).

2.1 Attacker Model

We adopt a commonly-used attacker model [3, 17, 21, 24, 29–31, 49, 56]: an attacker that observes
the execution of a program through events 𝜏 (Figure 1). These events model timing leaks through
cache and control flow while abstracting away low-level microarchitectural details.
Events 𝜆 are either the empty event 𝜖 , an action 𝛼? or 𝛼! where ? denotes events from the

component to the attacker and ! denotes events in the other direction, a microarchitectural action
𝛿 , or the designated event denoting termination.

Action call f ? represents a call to a function 𝑓 in the component, while call f ! represents a
call(back) to the attacker. In contrast, action ret! represents a return to the attacker and ret? a
return(back) to the component.

The microarchitectural actions store(n) and load(n) track addresses of store and loads, thereby
capturing leaks through the data cache. Moreover, pc(l) tracks the program counter during execu-
tion, thereby capturing leaks through the instruction cache. Finally, the startx and rlbx microar-
chitectural actions respectively denote the start and rollback of a speculative transaction [31], i.e.,
a set of speculatively executed instructions. Since we consider multiple speculative semantics (and

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 31. Publication date: January 2025.

Do You Even Lift? Strengthening Compiler Security Guarantees against Spectre Attacks 31:5

their combinations), startx and rlbx actions are labelled with an identifier 𝑥 denoting from which
semantics the transaction originated.
Traces 𝜏 are sequences of events 𝜆. A trace 𝜏 is terminating if it ends in . Given a trace 𝜏 , its

non-speculative projection 𝜏↾𝑛 [31] consists of all observations associated with non-speculatively ex-
ecuted instructions and it is computed by removing all sub-sequences enclosed between startx and
rlbx for any 𝑥 . To reason about combined semantics [24], we also need projections 𝜏↾𝑥 that removes
from the trace the contributions of a specific semantics with identifier 𝑥 . Specifically, 𝜏↾𝑥 denotes
the trace obtained by removing from 𝜏 all sub-sequences enclosed startx and rlbx for a given 𝑥 .

2.2 Syntax and Semantics of 𝜇Asm

𝜇Asm’s syntax is presented in Figure 1; we indicate the sequence of elements 𝑒1, · · · , 𝑒2 as 𝑒 and
𝑒 · 𝑒 denotes a stack with top element 𝑒 and rest of stack 𝑒 .

𝜇Asm has a notion of components, i.e., partial programs 𝑃 , and of attackers 𝐴. Components 𝑃
define their memory𝑚 (defined later), a list of functions 𝐹 , and a list of imports 𝐼 , which are all
the functions the component expects to be defined by an attacker. An attacker 𝐴 only defines its
memory and its functions. We indicate a program code base, i.e., its functions and imports, as 𝐶 . A
component 𝑃 and attacker 𝐴 can be linked to obtain a whole program𝑊 ≡ A [𝑃].

Functions consist of a start label 𝑙start indicating the position of the code 𝑐 of that function. Each
function ends with a ret instruction. Code 𝑐 is a sequence of mappings from natural-number labels
to instructions 𝑖 , where instructions 𝑖 include skipping, (conditional) register assignments, (private)
loads, (private) stores, indirect jumps, conditional branches, speculation barriers, calls, and returns.2
Instructions can refer to expressions 𝑒 , constructed by combining registers 𝑥 (described below)
and values 𝑣 with unary and binary operators. Values come from the set Vals and can be natural
numbers, labels, or ⊥.

Non-Speculative States. 𝜇Asm’s semantics is defined in terms of program states (Figure 1). Program
states 𝐶 ;𝐵;𝜎 consist of a codebase 𝐶 , a return frame 𝐵, and a configuration 𝜎 . 𝐶 is used to look up
functions, while 𝐵 stores the return addresses of called functions. 𝐵 consists of a stack of stacks of
natural numbers 𝑛. A new empty stack 𝑛 is created whenever a context switch between component
and attacker happens. In this way, neither component nor attacker can manipulate the return stack
of each other. Configurations 𝜎 consist of the program 𝑝 , the memory𝑚, and the register file 𝑎.
The code of the program 𝑝 is defined as the union of the code of all the functions and is a partial
function mapping labels 𝑙 to instructions 𝑖 .
Memories𝑚 map memory addresses 𝑛 ∈ Z to values 𝑣 . The memory is split into a public part

(represented by positive addresses 𝑛 ≥ 0) and a private part (represented by negative addresses
𝑛 < 0). Attackers 𝐴 can only define and access the public memory while programs 𝑃 define the
private memory and can access both private and public memory.
Register files 𝑎 map registers 𝑥 in Regs to their values 𝑣 . Note that the set Regs includes the

designated registers pc and sp, modelling the program counter and the stack pointer respectively.

Non-Speculative Operational Semantics. 𝜇Asm is equipped with a big-step operational seman-
tics [31] for expressions and a small-step operational semantics for instructions generating events.
The former has judgement 𝑎 ⊲ 𝑒 ↓ 𝑣 and means: “expression 𝑒 reduces to value 𝑣 under register file
𝑎.” The latter has judgement Ω

𝜏−→ Ω′ meaning: “state Ω reduces in one step to Ω′ emitting label 𝜏 .”
Below is a selection of these rules. Rule Load executes a load instruction from address 𝑛, emitting

the related microarchitectural action load 𝑛 exposing the accessed address 𝑛. Rule Call executes a
call to function 𝑓 ′ (whose address𝑛′ is looked up in the functions table F), it updates the register file
2Technically, instruction labels are drawn from a set 𝐿 of abstract labels mapped to natural numbers before execution.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 31. Publication date: January 2025.

31:6 Xaver Fabian, Marco Patrignani, Marco Guarnieri, and Michael Backes

𝑎′ = 𝑎[pc ↦→ 𝑛′], and it pushes a new frame with the return address 𝑎(pc) + 1 on the frames stack.
The auxiliary function find_fun(𝑛) = 𝑓 is used to look up a function 𝑓 starting from an address 𝑛
in memory, while 𝐶.intfs ⊢ 𝑓 ′, 𝑓 : 𝑖𝑛 is an (omitted) judgement to determine the decorator for the
call (and return) action: ? or ! depending on whether the call or return comes from the attacker to
the component or vice-versa. Rule Ret resumes the computation with the pc set to the address (𝑙) it
pops from the frames stack.

Ω
𝜏−→ Ω′

(Load)

𝑝 (𝑎(pc)) = load 𝑥, 𝑒 𝑥 ≠ pc 𝑎 ⊲ 𝑒 ↓ 𝑛

𝐶;𝐵; ⟨𝑝,𝑚, 𝑎⟩ load 𝑛−−−−−→ 𝐶;𝐵; ⟨𝑝,𝑚, 𝑎[pc ↦→ 𝑎(pc) + 1, 𝑥 ↦→𝑚(𝑛)]⟩
(Call)

𝑝 (𝑎𝑣 (pc)) = call 𝑓 ′ F (𝑓 ′) = 𝑛′ 𝑓 ′ ∈ 𝐶.funs 𝑎′ = 𝑎[pc ↦→ 𝑛′]
𝑎(pc) = 𝑛 find_fun(𝑛) = 𝑓 𝐶.intfs ⊢ 𝑓 ′, 𝑓 : 𝑖𝑛

𝐶;𝐵; ⟨𝑝,𝑚, 𝑎⟩
call 𝑓 ′?
−−−−−→ 𝐶; (𝐵 · (𝑎(pc) + 1); ∅); ⟨𝑝,𝑚, 𝑎′⟩

(Ret)

𝑝 (𝑎(pc)) = ret 𝑎(pc) = 𝑛 𝑎′ = 𝑎[pc ↦→ 𝑙]
find_fun(𝑛) = 𝑓 find_fun(𝑙) = 𝑓 ′ 𝐶.intfs ⊢ 𝑓 ′, 𝑓 : 𝑖𝑛

𝐶; (𝐵 · 𝑙 ;𝑛); ⟨𝑝,𝑚, 𝑎⟩ ret?−−−→ 𝐶;𝐵; ⟨𝑝,𝑚, 𝑎′⟩
Lastly, the semantics must capture the execution of whole programs. Whole programs are the

result of linking attackers and components and must have no undefined function imports. Whole
programs have a (straightforward and therefore omitted) big-step semantics ⇓ that concatenates
single steps into multiple ones and single labels into traces. The judgement Ω ⇓𝜏 Ω′ is read: “state
Ω emits trace 𝜏 and becomes Ω′.” The behaviour of a whole program𝑊 , written Beh𝑁𝑆 (𝑊), is the
set of terminating traces it produces.

Source Programs. The semantics described so far has no speculation. We use it as semantics for
the source programs of all our compilers. We indicate the language of such source programs as L.

2.3 Speculative Semantics

The target languages of the compilers we consider all have different speculative semantics mod-
eling the effects of speculatively executed instructions. The speculative semantics we define are
summarised in Table 1, where we list the instruction triggering speculation for each semantics.

Table 1. Speculative semantics with the instructions they speculate on

and their effects on execution.

Semantics Spec. Source (specInst) Effect

B [31] beqz branch misprediction
S [24] store store bypass
J (new) (indirect) jmp different jump target
R
[24] ret return misprediction

SLS (new) ret return bypass

We consider five different spec-
ulative semantics capturing branch
speculation (B), store-bypass
speculation (S), indirect jump
speculation (J), speculation us-
ing a return-stack buffer (

R
),

and straight-line speculation
over return instructions (SLS).
While B, S, and R

come
from prior work [24, 31], the J
and SLS semantics are novel.
All these semantics follow the always-mispredict approach [31]. At every instruction trigger-
ing speculative execution, the semantics first speculatively executes the wrong path for a bounded

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 31. Publication date: January 2025.

Do You Even Lift? Strengthening Compiler Security Guarantees against Spectre Attacks 31:7

number of steps (called the speculation window) and then continues with the correct one. The
effects of the speculatively executed instructions are visible on the trace as actions enclosed be-
tween start and rlb events. This always-mispredict approach captures the worst-case scenario
in terms of leakage because it always explores all executions (and corresponding observations)
associated with any possible choice of predicted values independently of the actual prediction. This
over-approximates any (cache-based) observations that an attacker that can control speculation
and select the predicted values among the possible predictions could observe.
All the speculative semantics we consider follow a similar structure, which we recap now.

Formally, the speculative state Σ𝑥 is a stack of speculative instances Φ𝑥 where reductions happen
only on top of the stack. Each instance Φ𝑥 contains the program state Ω and the remaining
speculation window 𝑛 describing the number of instructions that can still be executed speculatively
(or ⊥ when no speculation is happening). Depending on the semantics, the instance Φ𝑥 may track
additional data, e.g., the return-stack buffer in

R
. Below, we leave this additional information

abstract and we indicate it by ...; we refer to the companion report for full definitions of speculative
states. Throughout the paper, we fix the maximal speculation window, i.e., the maximum number
of speculative instructions, to a global constant 𝜔 .

Speculative States Σ𝑥 ::= Φ𝑥 Speculative Instance Φ𝑥 ::= ⟨Ω, 𝑛, ...⟩
Each semantics has an instruction that starts speculation (the central column of Table 1): whenever
those instructions are executed, the semantics first pushes the mispredicted state and then the
correct state onto the state Σ𝑥 .
The (small-step) judgement for all speculative semantics is of the form Σ𝑥

𝜏

𝑥 Σ′𝑥 and it
describes how the speculative state is updated when executing instructions. For all speculative
semantics, the behaviour Beh𝑥 (𝑊) of a whole program𝑊 is the trace 𝜏 generated by the big-step
judgment ⇓𝑥 , which executes the program𝑊 starting from its initial state until termination and
collect all produced actions.

Below, we overview the small-step judgments Σ𝑥
𝜏

𝑥 Σ′𝑥 for the speculative semantics we study.
We start from the two new speculative semantics SLS (Section 2.3.1) and J (Section 2.3.2) and
later present the semantics B (Section 2.3.3), S (Section 2.3.4), and

R
(Section 2.3.5) from prior

work [24, 31]. We first describe all rules for SLS, which we use to explain the structure of all our
speculative semantics. In contrast, for J, B, S, and R

, we only report the most significant
rule for each semantics, i.e., the rule that triggers the specific form of speculation listed in Table 1.

2.3.1 Modeling Straight-Line Speculation. Straight-line speculation (SLS) [5, 7] is a speculation
mechanism implemented in some CPUs where return instructions are speculatively bypassed and
the execution continues speculatively (after ignoring the return) for a fixed number of steps. The

SLS semantics models the effect of straight-line speculation using the small-step rules below.
Speculation is started by ret instructions. Whenever the semantics executes ret, the return

is speculatively bypassed and execution speculatively continues after the return (captured by
Rule SLS:AM-Ret-Spec). The rule pushes on the stack of speculative states a new speculative
instance ⟨Ω′′, j⟩, from which execution will continue. Note that speculation only starts when we
are inside the component. For this, the rule checks that the function 𝑓 being executed is not in the
imports, i.e., it is not attacker-defined: this ensures that labels are only produced when non-attacker
code is executed. Otherwise, execution continues normally (Rule SLS:AM-Ret-Spec-att).
Executing instructions that do not trigger speculation updates the program state according to

the non-speculative semantics, reduces the speculation window by 1, and produces actions when
needed (Rule SLS:AM-NoSpec-action and Rule SLS:AM-NoSpec-epsilon). These rules are only
triggered when the instruction is not a return, a fence or it is not in a set of instructions Z, which is

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 31. Publication date: January 2025.

31:8 Xaver Fabian, Marco Patrignani, Marco Guarnieri, and Michael Backes

used to track the speculation-related instructions across combinations of the semantics [24]. When
the speculation window in the top instance hits 0, the speculative state is rolled back and discarded
(Rule SLS:AM-Rollback) and execution continues from the speculative instance now on top.

Finally, speculation barriers terminate speculation, which we model by setting the current
speculation window to 0 (Rule SLS:AM-barr-spec). In non-speculative executions (i.e., when the
speculation window is ⊥), speculation barriers are handled as skip (Rule SLS:AM-barr).

ΦSLS

𝜏

SLS Φ
′
SLS

(SLS:AM-Ret-Spec)

p(𝜎 (pc)) = ret Ω
𝜏−→ Ω′ Ω = F; I;B;𝜎 find_fun(Ω(pc)) = f f ∉ I

Ω′′ = F; I;B;𝜎 ′′ 𝜎 ′′ = 𝜎 [pc ↦→ Ω(pc) + 1] j = min(𝜔, n)

⟨Ω, n + 1⟩
𝜏

SLS ⟨Ω′, n⟩ · ⟨Ω′′, j⟩
(SLS:AM-Ret-Spec-att)

p(𝜎 (pc)) = ret Ω
𝜏−→ Ω′

find_fun(Ω(pc)) = f f ∈ I

⟨Ω, n + 1⟩
𝜏

SLS ⟨Ω′, n⟩

(SLS:AM-NoSpec-action)

p(𝜎 (pc)) ≠ ret, spbarr,Z
Ω

𝜏−→ Ω′

⟨Ω, n + 1⟩
𝜏

SLS ⟨Ω′, n⟩

(SLS:AM-Rollback)

n = 0 or ⊢ Ω : fin

⟨Ω, n⟩
rlbSLS

SLS 𝜀

(SLS:AM-NoSpec-epsilon)

p(𝜎 (pc)) ≠ ret, spbarr,Z
Ω

𝜖−→ Ω′

⟨Ω, n + 1⟩
𝜖

SLS ⟨Ω′, n⟩

(SLS:AM-barr)

p(𝜎 (pc)) = spbarr
Ω′ = Ω[pc ↦→ pc + 1]

⟨Ω,⊥⟩
𝜖

SLS ⟨Ω′,⊥⟩

(SLS:AM-barr-spec)

p(𝜎 (pc)) = spbarr
Ω′ = Ω[pc ↦→ pc + 1]

⟨Ω, n + 1⟩
𝜖

SLS ⟨Ω′, 0⟩

2.3.2 Modeling Jump Speculation. Jump speculation allows jump instructions to speculate the
address where they are jumping to [39]. To model this, Rule J:AM-Jmp-Spec creates a set of
speculative instances, with one speculative instance for each of the possible jump targets in the
program, by updating the program counter pc to that jump target.

ΦJ
𝜏

J Φ
′
J

(J:AM-Jmp-Spec)

p(𝜎 (pc)) = jmp x x ∈ Regs Ω
𝜏−→ Ω′ Ω = F; I;B;𝜎

find_fun(Ω′ (pc)) = f ′ find_fun(𝜎 (pc)) = f f ∉ I I ⊢ f, f ′ : 𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙
j = min(𝜔, n) Σ′′J =

⋃
𝑙∈𝑝 ⟨Ω′′, j⟩ where Ω′′ = F; I;B;𝜎 [pc ↦→ l]

⟨Ω, n + 1⟩
𝜏

J ⟨Ω′, n⟩ · Σ′′J

2.3.3 Modeling Branch Speculation. CPUs speculate over the outcome of branch instructions [39],
which might result in speculatively executing the wrong branch. To model this, we rely on the

B semantics from [31] where Rule B:AM-Branch-Spec speculates on branching instructions by
pushing on top of the stack of speculative states the state that is opposite of the evaluated condition.

ΦB
𝜏

B Φ
′
B

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 31. Publication date: January 2025.

Do You Even Lift? Strengthening Compiler Security Guarantees against Spectre Attacks 31:9

(B:AM-Branch-Spec)

p(𝜎 (pc)) = beqz x, l Ω
𝜏−→ Ω′ Ω = F; I;B;𝜎 find_fun(𝜎 (pc)) = f f ∉ I

Ω′′ = F; I;B;𝜎 ′′ 𝜎 ′′ = 𝜎 [pc ↦→ l′] j = min(𝜔, n)
if 𝜎 ′ (pc) = l then l′ = 𝜎 (pc) + 1 otherwise l′ = l

⟨Ω, n + 1⟩
𝜏

B ⟨Ω′, n⟩ · ⟨Ω′′, j⟩
2.3.4 Modeling Store-bypass Speculation. Modern CPUs write stores to main memory asynchro-
nously to reduce delays caused by thememory subsystem. Thismay result in speculatively bypassing
store instructions and fetching stale information from the CPU’s load-store queue [35]. To model
this, we rely on the S semantics from [24] where Rule S:AM-Store-Spec speculates on stores by
adding a state at the top of the stack where a store has been skipped.

ΦS

𝜏

S Φ
′
S

(S:AM-Store-Spec)

p(𝜎 (pc)) = store x, e Ω
𝜏−→ Ω′ Ω = F; I;B;𝜎 find_fun(𝜎 (pc)) = f f ∉ I

Ω′′ = F; I;B;𝜎 ′′ 𝜎 ′′ = 𝜎 [pc ↦→ Ω(pc) + 1] j = min(𝜔, n)

⟨Ω, n + 1⟩
𝜏

S ⟨Ω′, n⟩ · ⟨Ω′′, j⟩
2.3.5 Modeling Return Speculation. CPUs also speculate on the outcome of return instructions [41].
For this, they rely on a microarchitectural data structure called the return-stack-buffer (RSB).
The speculative semantics

R
, taken from [24], models this kind of speculation by extending the

speculative instances with a return stack buffer R, which is a list of return locations. Rule R:AM-
Ret-Spec, which is the one starting speculation, works by speculatively returning to the ‘wrong’
location l at the top of the RSB whenever l differs from the expected return address B(0) upon
encountering a return instruction. Note also that the semantics pushes a return address to the RSB
whenever a call instruction is executed (not shown in the rules below).

ΦR

𝜏

R Φ
′
R

(R:AM-Ret-Spec)

p(𝜎 (pc)) = ret Ω
𝜏−→ Ω′ Ω = F; I;B;𝜎 Ω′ = F; I;B′;𝜎 ′ R = R′ · l

l ≠ B(0) Ω′′ = F; I;B′;𝜎 ′′ j = min(𝜔, n)
find_fun(𝜎 (pc)) = f find_fun(𝜎 ′ (pc)) = f ′ f, f ′ ∉ I 𝜎 ′′ = 𝜎 [pc ↦→ l]

⟨Ω,R, n + 1⟩
𝜏

R ⟨Ω′,R′, n⟩ · ⟨Ω′′,R′, j⟩

2.4 Combining Speculative Semantics

To reason about leaks resulting from multiple speculation sources, we rely on the combination
framework from Fabian et al. [24]. This framework allows combining multiple speculative semantics
(for different speculation sources) into a combined semantics that allows reasoning about all these
kinds of speculation. For instance, combining B and S yields the composed semantics B+S that
speculates on both beqz and store instructions. We remark that a composed semantics is “stronger
than its parts”, that is, it may explore speculative actions that only arise from the interaction of its
component semantics. As shown in [24], some programs contain leaks only under the composed
semantics, even though the programs are leak-free when considering the base semantics in isolation.
The core component of this combination framework is the notion of well-formed composition,

which needs to be tailored to the specific properties that combinations need to preserve. Here we

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 31. Publication date: January 2025.

31:10 Xaver Fabian, Marco Patrignani, Marco Guarnieri, and Michael Backes

report two properties that well-formed combinations need to satisfy; we will introduce a third,
novel, well-formedness condition in Section 3 to deal with preservation of the security properties.

Definition 1 (Well-Formed Composition – Part 1). The composition of semantics 𝑥 and 𝑦 is
well-formed, denoted with ⊢ 𝑥+𝑦 : WFC, if it satisfies the following properties and the property later
defined in Definition 6:

• Confluence [24]: If Σ𝑥+𝑦
𝜏 ′

𝑥+𝑦 Σ′𝑥+𝑦 and Σ𝑥+𝑦
𝜏 ′′

𝑥+𝑦 Σ′′𝑥+𝑦 , then Σ′𝑥+𝑦 = Σ′′𝑥+𝑦 and 𝜏 ′ = 𝜏 ′′.
• Projection Preservation [24]: Beh𝑥 (𝑃) = Beh𝑥+𝑦 (𝑃)↾𝑦 and Beh𝑦 (𝑃) = Beh𝑥+𝑦 (𝑃)↾𝑥 .

Confluence ensures the determinism of the combined semantics (where Σ𝑥+𝑦 is the operational
state for the combined semantics), whereas Projection Preservation ensures that the speculative
behaviour of the source semantics can be recovered from the behavior of the composed semantics.

2.5 Leakage Ordering

Each speculative semantics in Table 1, as well as their compositions, capture different “attacker
models”, where the attacker can observe the effects (visible on the traces) of the speculative
instructions modelled by the semantics. To reason about the strength of these attacker models, we
follow [30] and introduce a partial order in terms of leakage between the different semantics. In
particular, we say that semantics 1 is weaker than another semantics 2, written 1 ⊑ 2 iff 2
leaks more than 1, i.e., if any two initial configurations that result in different traces for 1 also
result in different traces for 2.3

B+J+S+R B+J+S+SLS

J+S+R B+J+R B+S+R B+J+S B+J+SLS B+S+SLS J+S+SLS

J+R S+R B+R J+S B+J B+S B+SLS J+SLS S+SLS

𝑁𝑆

R J S B SLS

Fig. 2. Ordering of 𝜇Asm semantics. A semantics higher in the order is

stronger, i.e., exposes more information.

Figure 2 depicts all the
semantics studied in this
paper as well as their com-
binations ordered accord-
ing to the amount of leaked
information, where there
is an edge from semantics

1 to 2 whenever 1 ⊑
2. In the figure, the weak-

est semantics is 𝑁𝑆 , since
it only exposes informa-
tion about non-speculative
instructions. In contrast,

B+S exposes speculation
on both beqz and store
instructions and is thus
stronger than its compo-
nents B and S. Note
that there is no single
strongest semantics in Fig-
ure 2 due to limitations
in the combination frame-
work we use [24], which
does not allow for combining semantics speculating on the same instruction like

R
and SLS.

3For readers familiar with [30], we flipped the relation ⊑ from the original paper.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 31. Publication date: January 2025.

Do You Even Lift? Strengthening Compiler Security Guarantees against Spectre Attacks 31:11

3 Security Notions

In this section, we present the security notions used in our framework. Since our goal is studying
the security of compiler countermeasures against different classes of speculative leaks, we extend
the secure compilation framework from Patrignani and Guarnieri [49] to work with 𝜇Asm and with
all speculative semantics from Section 2 and their combinations.

All our security definitions rely on a notion of robustness, typical for secure compilation work [2],
which we explain first (Section 3.1). Next, we introduce two security notions for programs (Sec-
tion 3.2): Robust Speculative Non-Interference (RSNI) and Robust Speculative Safety (RSS). We
continue by presenting the secure compilation criteria (Section 3.3). We conclude by introducing
Relation Preservation, the novel, remaining property for well-formed compositions (Section 3.4),
which together with Confluence and Projection Preservation from Section 2.4 precisely characterize
the core properties of composed semantics.

3.1 Robustness

All our security definitions are robust [1, 2, 27, 28, 48, 51, 55], i.e., they quantify over every possible
valid attacker. In particular, 𝜇Asm defines partial programs 𝑃 (which specify a set of functions
to be imported) that are linked to the attacker-controlled context 𝐴 (which defines the imported
functions), leading to a whole program𝑊 ≡ A [𝑃]. Thus, the attacker is also code executed together
with the partial program 𝑃 .

In this work, we say that a component satisfies a property robustly iff it satisfies the property
for all possible valid attackers, where an attacker is valid, written ⊢ A : atk, if it does not define a
private memory and does not contain instructions that read and write to the private memory. This
notion of robustness allows for separate compilation of our partial programs 𝑃 .

3.2 Security Notions for Whole Programs

In this section, we extend the notions of RSNI (Section 3.2.1) and RSS (Section 3.2.2) to 𝜇Asm and
all semantics from Section 2.

3.2.1 Robust Speculative Non-Interference (RSNI). RSNI is the application of Speculative Non-
Interference to the robust setting. Speculative Non-Interference (SNI) is a class of security prop-
erties [30, 31] that compares the information leaked by instructions executed speculatively and
non-speculatively. Intuitively, a program satisfies SNI iff it does not leak more information un-
der the speculative semantics than under the non-speculative semantics. Thus, SNI semantically
characterizes security against leaks introduced by speculatively executed instructions.
RSNI is parametric in (1) a policy denoting the sensitive information and (2) in the speculative

semantics 𝑥 , which models the speculative behaviour of programs. The policy describes which
parts of the program state are public. In our case, only the private part of the memory𝑀 is sensitive.
Thus, two programs 𝑃 and 𝑃 ′ are low-equivalent, written 𝑃 =𝐿 𝑃 ′, if they only differ in their private
memory. RSNI compares the leakage between non-speculative traces and speculative traces. In a
nutshell, a program 𝑃 satisfies RSNI (Definition 2) for a speculative semantics 𝑥 if for any low-
equivalent program 𝑃 ′ that generates the same non-speculative trace, the two programs generate
the same speculative traces as well robustly. Here the (omitted) function Ω0 is used to initialize the
machine state for whole programs.

Definition 2 (Robust Speculative Non-Interference [49] (RSNI)).

𝑥 ⊢ P : RSNI def= ∀A,𝑊 ′ . if ⊢ A : atk and A [P] =𝐿 𝑊 ′ and Beh𝑥 (Ω0 (A [P]))↾𝑛 = Beh𝑥 (Ω0 (𝑊 ′))↾𝑛
then Beh𝑥 (Ω0 (A [P])) = Beh𝑥 (Ω0 (𝑊 ′))

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 31. Publication date: January 2025.

31:12 Xaver Fabian, Marco Patrignani, Marco Guarnieri, and Michael Backes

We remark that all programs satisfy RSNI for the non-speculative semantics 𝑁𝑆 because there
is no speculation and, thus, 𝜏↾𝑛 = 𝜏 for all its traces [49, Theorem 3.4].

3.2.2 Robust Speculative Safety. SNI is a hyperproperty and requires reasoning about pairs of
traces. To simplify secure compilation proofs, we follow [49] and over-approximate RSNI using
robust speculative safety (RSS), a safety property which only requires reasoning about single traces.

Just like RSNI, RSS is the application of Speculative Safety to the robust setting. Speculative Safety
uses taint tracking, tainting values as “safe” (denoted by 𝑆) if the value can be speculatively leaked
without violating RSNI (e.g., the public memory is safe), or “unsafe” (denoted by 𝑈) otherwise.
Furthermore, taints are propagated during computation. We instantiate taint tracking for all the
speculative semantics in Section 2.3; we refer the interested reader to [49, Section 3.2] for the taint
tracking rules since these rules are virtually unchanged.

RSS ensures that programs 𝑃 robustly generate only safe (𝑆) actions in their traces.

Definition 3 (Robust Speculative Safety [49] (RSS)).

𝑥 ⊢ P : RSS def

= ∀A, 𝜏, 𝜆𝜎 . if ⊢ A : atk and 𝜏 ∈ Beh𝑥 (Ω0 (A [P])) and 𝜆𝜎 ∈ 𝜏 , then 𝜎 ≡ S

Again, RSS trivially holds for the non-speculative semantics 𝑁𝑆 [49, Theorem 3.9] because
there is no speculation.

Theorem 1, which we proved for all speculative semantics defined in Table 1, precisely connects
RSNI and RSS by showing that RSS over-approximates RSNI.

Theorem 1 (RSS Overapproximates RSNI). For all semantics 𝑥 in Table 1, if 𝑥 ⊢ 𝑃 : RSS then
𝑥 ⊢ 𝑃 : RSNI.

3.3 Secure Compilation Criteria

We now present robust speculative safety preservation (RSSP) and robust speculative non-interference
preservation (RSNIP), two criteria defined in [49] for reasoning about compiler guarantees against
speculative leaks, which we make parametric in the underlying speculative semantics. Note that in
this paper we use the term “compiler” to refer to an individual compilation pass on 𝜇Asm programs
(rather than to a compiler from a high-level to a low-level language as is more usual).

A compiler preserves RSS for a given semantics 𝑥 if given a source component that is RSS
under the non-speculative semantics, the compiled counterpart is also RSS under 𝑥 .

Definition 4 (Robust speculative safety preservation [49] (RSSP)).

𝑥 ⊢ J·K : RSSP def

= ∀𝑃 ∈ 𝐿. if 𝑁𝑆 ⊢ 𝑃 : RSS then 𝑥 ⊢ J𝑃K : RSS
Similarly, a compiler preserves RSNI for a given semantics 𝑥 if given a source component that

is RSNI under the non-speculative semantics, the compiled counterpart is also RSNI under 𝑥 .

Definition 5 (Robust speculative non-interference preservation [49] (RSNIP)).

𝑥 ⊢ J·K : RSNIP def

= ∀𝑃 ∈ 𝐿. if 𝑁𝑆 ⊢ 𝑃 : RSNI then 𝑥 ⊢ J𝑃K : RSNI
We conclude by stating Theorem 2, which presents two new results. It states that (1) whenever a

compiler preserves the security for a stronger semantics (i.e., one that exposes more information),
then it also preserves security for weaker ones, and dually that (2) whenever a compiler does not
preserve security for a weaker semantics, then it does not preserve security for stronger ones.

Theorem 2 (Leakage ordering and RSNIP ,). The following statements hold for any 1, 2:
• If 2 ⊢ J·K : RSNIP and 1 ⊑ 2 then 1 ⊢ J·K : RSNIP .
• If 1 ⊬ J·K : RSNIP and 1 ⊑ 2 then 2 ⊬ J·K : RSNIP .

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 31. Publication date: January 2025.

Do You Even Lift? Strengthening Compiler Security Guarantees against Spectre Attacks 31:13

3.4 Well-Formed Compositions and Compilers

We now introduce Relation Preservation, the last property—in addition to Confluence and Projection
Preservation (see Section 2.4)—for well-formed compositions of speculative semantics. We remark
that while Confluence and Projection Preservation come directly from [24], Relation Preservation
is new and tailored to ensure, together with the other two properties, that RSS overapproximates
RSNI for any well-formed composition.

Definition 6 (Well-Formed Composition – Part 2).
Relation Preservation

If Σ𝑥+𝑦 ≈ Σ
′
𝑥+𝑦 and Σ𝑥+𝑦 ⇓𝜏𝑥+𝑦 Σ†𝑥+𝑦 and ⊢ 𝜏 : safe then Σ

′
𝑥+𝑦 ⇓𝜏𝑥+𝑦 Σ

′′
𝑥+𝑦 and Σ†𝑥+𝑦 ≈ Σ

′′
𝑥+𝑦 .

To explain Relation Preservation we need to mention two technical details: the state relation ≈
and the judgement ⊢ 𝜏 : safe. Judgement ⊢ 𝜏 : safe means that all actions on the trace are tainted
as safe (𝑆). Intuitively, the relation ≈ relates two states iff their registers and memories locations
have the same taint and all elements tainted 𝑆 have the same values in the two states. We note that
we can derive Relation Preservation in a general manner whenever the source semantics enjoy
Relation Preservation as well (like our semantics B, J, S, R, and SLS).

The main result of this section is Theorem 3, which states that for any well-formed composition,
RSS overapproximates RSNI. We remark that we prove Theorem 3 once and for all by exploiting (1)
the well-formedness properties and (2) the fact that all compositions in Figure 2 are well-formed,
rather than having to prove the implication for each of the composed semantics.

Theorem 3 (RSS Overapproximates RSNI for Compositions). If ⊢ 𝑥+𝑦 : WFC and 𝑥+𝑦 ⊢
𝑃 : RSS, then 𝑥+𝑦 ⊢ 𝑃 : RSNI.

Corollary 1 relates the security of a compiler for a well-formed composition with the security of
its composing semantics. In particular, if a compiler is RSSP for a well-formed composition 𝑥+𝑦 ,
then it is also RSSP for the composing semantics 𝑥 and 𝑦 . Dually, if a compiler is not RSSP for a
component, then it is not RSSP for any composition.

Corollary 1 (RSSP and compositions,). The following statements hold for any well-formed 𝑥+𝑦 :
• If 𝑥+𝑦 ⊢ J·K : RSSP then 𝑥 ⊢ J·K : RSSP and 𝑦 ⊢ J·K : RSSP .
• If 𝑥 ⊬ J·K : RSSP or 𝑦 ⊬ J·K : RSSP then 𝑥+𝑦 ⊬ J·K : RSSP .

We remark that an analogue of Corollary 1 holds for RSNIP .

4 Lifting Compiler Guarantees

Compiler countermeasures against speculative leaks are often developed and proven secure against
a specific speculative semantics. For instance, countermeasures against Spectre-PHT have been
proven secure against the B semantics [49] modelling speculation over branch instructions. CPUs,
however, may employ other speculation mechanisms, whose details might even be unknown when
the countermeasure is designed, beyond those originally targeted by the countermeasure.
Ensuring the security of a countermeasure hence requires continuously validating their guar-

antees (e.g., through proofs) against stronger and stronger semantics, as soon as new speculation
mechanisms are discovered and modeled. For instance, in the context of Spectre-PHT attacks,
countermeasures need to be proved secure against stronger semantics like B+J+S+R rather than

B as done in [49]. To reduce the burden of re-proving security whenever a new speculation
mechanism is discovered, we need ways of lifting security guarantees from weaker to stronger
semantics, which supports more speculations.

In this section, we address this issue by precisely characterizing under which conditions the scope
of a countermeasure can be securely extended to other speculation mechanisms. More precisely,

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 31. Publication date: January 2025.

31:14 Xaver Fabian, Marco Patrignani, Marco Guarnieri, and Michael Backes

we study whenever the security guarantees provided by a compiler targeting a semantics 𝑥 can
be lifted to a stronger semantics 𝑦 , i.e., 𝑥 ⊑ 𝑦 . First, we introduce the preconditions for our
lifting theorem, i.e., the notions of Independence and Safe Nesting, as well as our main result: the
Lifted Compiler Preservation Theorem (Theorem 4) characterizing when security guarantees can be
lifted to stronger semantics (Section 4.1). Then, we introduce Syntactic Independence (Section 4.2)
and Trapped Speculation (Section 4.3), a set of sufficient conditions for Independence and Safe
Nesting respectively. As we show in Section 5, these preconditions can be used in many cases to
significantly simplify proofs of Independence and Safe Nesting in practice.

4.1 Lifting Theorem

In this section, we precisely characterize the sufficient conditions for lifting the security guarantees
provided by a compiler targeting a semantics 𝑥 to a stronger semantics 𝑥+𝑦 . We start by providing
a high-level intuition about how two component semantics 𝑥 and 𝑦 can interact when composed
as 𝑥+𝑦 (Section 4.1.1). Next, we formalize the notions of Independence (Section 4.1.2) and Safe
Nesting (Section 4.1.3), which precisely characterize when a compiler’s guarantees can be lifted
from 𝑥 to 𝑥+𝑦 . Then, we introduce Conditional Robust Speculative Safety Preservation (CRSSP),
a new secure compilation criterion ensuring that RSS is preserved in the composed semantics 𝑥+𝑦
by the compiler for 𝑥 only for those programs that already satisfy RSS for 𝑦 . We conclude by
stating and explaining our lifting theorem (Section 4.1.5) which is the main result of this section.

4.1.1 Interplay of Semantics. To understand the challenges involved in lifting security guarantees
from a weaker semantics 𝑥 to a stronger semantics 𝑥+𝑦 , one needs to consider the interactions
of 𝑥 and 𝑦 .

start𝑥 𝜏 start𝑦 𝜏 ′

start𝑦 𝜏 start𝑥 𝜏 ′

rlb𝑦 𝜏 ′′ rlb𝑥

rlb𝑥 𝜏 ′′ rlb𝑦

·

·

·

·

·

·

·

·

·

·

·

·

Region 3

Region 1

Region 2

Fig. 3. Interplay of semantics 𝑥 and 𝑦 when executing a program under the combined semantics 𝑥+𝑦 .

Figure 3 depicts two portions of traces produced when executing a program under the composed
semantics 𝑥+𝑦 . The first trace (top) starts with a speculative transaction from semantics 𝑥

(highlighted in red and starting with action start𝑥). Inside the red speculative transaction, there
is a nested speculative transaction from semantics 𝑦 (highlighted in green, starting with action
start𝑦 and ending with action rlb𝑦). After the termination of the nested transaction, the outer red
transaction continues until the end of its speculative window (action rlb𝑥). Dually, the second trace
(bottom) starts with a speculative transaction from 𝑦 followed by a nested transaction from 𝑥 .

Thus, there are three different regions that might result in leaks:
• Region 1: the speculative transaction started by 𝑥 (highlighted in red),
• Region 2: the speculative transaction started by 𝑦 (highlighted in blue), and
• Region 3: the nested transactions (highlighted in green).

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 31. Publication date: January 2025.

Do You Even Lift? Strengthening Compiler Security Guarantees against Spectre Attacks 31:15

Note that while regions 1 and 2 are generated by a single semantics, the nested speculative trans-
actions in Region 3 only arise in the combined semantics 𝑥+𝑦 . While leaks in region 1 are fixed
by proving the security of a compiler for the speculative semantics 𝑥 , i.e., 𝑥 ⊢ J·K : RSSP , we
need additional conditions to ensure the absence of leaks in Regions 2 and 3. Thus, we introduce
the notions of Independence with respect to a speculative semantics 𝑦 and Safe Nesting which
ensure the absence of leaks in Regions 2 and 3 respectively.

4.1.2 Independence. Intuitively, when trying to lift our compiler security from the speculative
semantics 𝑥 to a stronger semantics 𝑥+𝑦 , we need to ensure that the compiler does not introduce
new leaks for the extension semantics 𝑦 . The Independence property precisely characterizes
this aspect: A compiler J·K for the origin semantics 𝑥 is called independent for the extension
semantics 𝑦 iff the compiler does not introduce further leaks under the extension semantics 𝑦 .

Definition 7 (Independence in Extension).

𝑦 ⊢ J·K : 𝐼
def

= ∀𝑃 . if 𝑦 ⊢ 𝑃 : RSS then 𝑦 ⊢ J𝑃K : RSS

Note that Independence differs from RSSP (Definition 4) in that the former uses 𝑦 in the pre-
and post-condition, whereas the latter employs the 𝑁𝑆 in its pre-condition.

As stated in Corollary 2, a compiler that is RSSP for 𝑥 is also Independent w.r.t. this semantics.

Corollary 2 (Self Independence,). If 𝑥 ⊢ J·K : RSSP , then 𝑥 ⊢ J·K : 𝐼 .

4.1.3 Safe Nested Speculation. Given a combined semantics 𝑥+𝑦 , a program 𝑃 has Safe Nested
Speculations (denoted with 𝑥+𝑦 ⊢ 𝑃 : safeN) if all actions inside nested speculative transactions are
safe. Safe nesting, therefore, ensures that there are no unsafe interactions between the composing
semantics 𝑥 and 𝑦 .

Definition 8 (Safe Nested Speculation).

𝑥+𝑦 ⊢ 𝑃 : safeN def

= ∀𝜏 ∈ Beh𝑥+𝑦 (𝑃), if
start𝑎 · 𝜏 ′ · rlb𝑎 is a subtrace of 𝜏 and start𝑏 · 𝜏 ′′ · rlb𝑏 is a subtrace of 𝜏 ′

then ⊢ 𝜏 ′′ : safe where 𝑎 ∈ {𝑥,𝑦} and 𝑏 ∈ {𝑥,𝑦} \ {𝑎}

Finally, we say that a compiler satisfies the Safe Nested Speculation property, written 𝑥+𝑦 ⊢
J·K : safeN, iff all its compiled programs satisfy Definition 8, i.e., ∀𝑃 . 𝑥+𝑦 ⊢ J𝑃K : safeN.

4.1.4 Conditional Robust Speculative Safety Preservation. Often compilers implementing Spectre
countermeasures are developed to prevent leaks introduced by a specific speculation mechanism.
Hence, when lifting their security guarantees to a semantics that accounts for additional speculation
mechanisms, compiled programs might still contain some leaks that the compiler was not designed
to prevent in the first place, i.e., leaks caused only by the additional mechanisms. However, RSSP
is too strict of a criterion here, since it does not distinguish between the different speculation
mechanisms that cause the leak. To account for this, we propose a new secure compilation criterion
called Conditional Robust Speculative Safety Preservation (CRSSP, Definition 9). As the name
indicates, CRSSP is a variant of RSSP that restricts RSS preservation only to those programs that do
not contain leaks caused only by the additional mechanisms.

Definition 9 (Conditional Robust Speculative Safety Preservation (CRSSP)).

𝑥 , 𝑦 ⊢ J·K : CRSSP
def

= ∀𝑃 ∈ 𝐿. if 𝑁𝑆 ⊢ 𝑃 : RSS and 𝑦 ⊢ 𝑃 : RSS, then 𝑥+𝑦 ⊢ J𝑃K : RSS.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 31. Publication date: January 2025.

31:16 Xaver Fabian, Marco Patrignani, Marco Guarnieri, and Michael Backes

4.1.5 Lifting Theorem. We are now ready to introduce the main result of this section, that is,
our lifting theorem (Theorem 4). Intuitively, we can lift the security guarantees of a compiler J·K
targeting semantics 𝑥 to a stronger WFC semantics 𝑥+𝑦 for a program 𝑃 provided that (1) the
compiler J·K is RSSP for 𝑥 , (2) it fulfills Independence for the extension semantics 𝑦 , and (3) it
fulfills Safe Nesting for the combined semantics 𝑥+𝑦 .

Theorem 4 (Lifted Compiler Preservation,). If 𝑥 ⊢ J·K : RSSP and 𝑦 ⊢ J·K : 𝐼 and
𝑥+𝑦 ⊢ J·K : safeN and ⊢ 𝑥+𝑦 : WFC , then 𝑥 , 𝑦 ⊢ J·K : CRSSP.

We remark that our lifted guarantees hold only for programs 𝑃 that are initially secure w.r.t.
the extension semantics 𝑦 . That is, the compiler enjoys 𝑥 , 𝑦 ⊢ J·K : CRSSP not the stronger
property 𝑥+𝑦 ⊢ J·K : RSSP . The reason is that while compiler J·K does not introduce further leaks
under the extension semantics 𝑦 (due to Independence), it might not prevent 𝑦-leaks already
present in the source program.

For the traces depicted in Figure 3, Theorem 4 ensures RSS (for any program satisfying RSS for
the extension semantics 𝑦) under the composed semantics as follows. For Region 1, RSS follows
from 𝑥 ⊢ J·K : RSSP . For Region 2, RSS follows from the program being originally RSS under 𝑦

and from J·K fulfilling Independence for extension 𝑦 . Finally, for Region 3, RSS follows from the
compiled program having Safe Nesting.

Theorem 4 allows us to lift the security guarantees of our secure compilers to stronger semantics,
without worrying about unexpected leaks introduced by other speculation mechanisms (captured
by the extension semantics) and, crucially, without requiring new secure compilation proofs.

Next, we give sufficient conditions for Independence (Section 4.2) and Safe Nesting (Section 4.3).

4.2 Syntactic Independence: Independence for Free

To simplify the task of proving Independence, we now introduce Syntactic Independence (SI) (Defini-
tion 10), a syntactic sufficient condition for Independence. As the name suggests, SI can be checked
by syntactic inspection of the compiler J·K and of the extension semantics 𝑦 .

Before formalizing SI, we introduce some notation. Given a compiler J·K, we denote by injInst (J·K)
the set of instructions that the compiler inserts during compilation. For instance, for a simple com-
piler J·Kf

B that inserts spbarr instructions after branch instructions to prevent speculation [49],
injInst (J·Kf

B) is the set {spbarr}. Given a semantics , we denote by specInst () the set of instruc-
tions that trigger speculation in . For instance, for semantics SLS, which models straight-line
speculation over return instructions, the set specInst (SLS) is {ret}.

We are now ready to formalize Syntactic Independence (Definition 10). In a nutshell, a compiler
J·K is syntactically independent for a semantics (denoted with ⊢ J·K : 𝑆𝐼) if the compiler
does not insert (1) any instructions that trigger speculation under , and (2) any instructions that
produce data-dependent actions or modify the program state (except for the program counter pc
and the stack pointer sp). The first requirement ensures that the compiler does not introduce new
(potentially unsafe) speculative transactions, whereas the second requirement ensures that the
compiler does not introduce unsafe actions into existing safe speculative transactions under .

Definition 10 (Syntactic Independence).

⊢ J·K : 𝑆𝐼 def

= injInst (J·K) ∩ specInst () = ∅ and injInst (J·K) ∩ {beqz, jmp, store, load,←} = ∅

For instance, the compiler J·Kf
B mentioned above is SI w.r.t. SLS since injInst (J·Kf

B)∩specInst (SLS)
= {spbarr} ∩ {ret} = ∅ and {spbarr} ∩ {beqz, jmp, store, load,←} = ∅.
Lemma 1 connects Syntactic Independence and Independence.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 31. Publication date: January 2025.

Do You Even Lift? Strengthening Compiler Security Guarantees against Spectre Attacks 31:17

Lemma 1 (SI Implies Independence). If 𝑦 ⊢ J·K : 𝑆𝐼 , then 𝑦 ⊢ J·K : 𝐼 .

We remark that checking SI is significantly simpler than manually proving Independence. As
we show in Section 5.3, SI plays a critical role in reducing the amount of Independence proofs
necessary to carry out our security analysis. Despite its restrictiveness, SI is applicable to two
classes of compiler countermeasures—lfence-based countermeasures [38] and return-trampoline
countermeasures [36]—that work by stalling speculative execution. For more complex countermea-
sures, e.g., speculative load hardening [16], that aim at preventing speculative leaks (rather than
preventing speculation altogether), SI is not applicable since the compiler might instrument the
program with additional instructions that modify the program state. In this case, in our security
analysis we fall-back to standard Independence proofs.

4.3 Trapped Speculation: Fulfilling Safe Nesting

Showing that the compiled program fulfils the Safe Nesting condition is challenging because
it requires reasoning about both the compiler as well as the interactions between component
semantics. To help with this, we now introduce a sufficient condition on compilers that ensures
that all compiled programs enjoy the Safe Nesting property.

Definition 11 (Trapped Speculation of Compiler).

𝑥 ⊢ J·K : trappedSpec
def

= ∀𝑃, 𝜏 ∈ Beh𝑥 (J𝑃K), 𝜏 ∈ 𝜏↾𝑠𝑒 . ∃𝑛. 𝜏 = rlb𝑥 𝑛 or 𝜏 = start𝑥 𝑛

In a nutshell, a compiler satisfies Definition 11 iff it traps speculation, which we model by
requiring that the only speculative actions 𝜏 produced by compiled programs are either start𝑥 𝑛
(i.e., beginning of speculation) or rlb𝑥 𝑛 (i.e., end of speculation). This, thus, implies that there are
no unsafe actions between the start of a speculation transaction and its rollback as required by Safe
Nesting. For example, a compiler inserting fences into the program stops speculation immediately
and fulfils our definition of Trapped Speculation. Similarly, a compiler inserting a so-called return
trampoline [36] (which traps speculation in a loop) also fulfills Trapped Speculation.

Definition 11 relies on the speculative projection function ↾𝑠𝑒 , which removes all non-speculative
observations from the trace and is defined as the inverse of the non-speculative projection ↾𝑛 .
Lemma 2 connects Trapped Speculation (Definition 11) with Safe Nesting (Definition 8).

Lemma 2 (Trapped Speculation Implies Safe Nesting,). If 𝑥 ⊢ J·K : trappedSpec then 𝑥+𝑦 ⊢
J·K : safeN.

As we show in Section 5.4, Definition 11 significantly reduces the proof burden. In particular,
rather than having to reason about the combined semantics 𝑥+𝑦 when showing Safe Nesting, we
can just reason about the compiler J·K for semantics 𝑥 .
With this formal setup, we now move on to our security analysis, which demonstrates how

to attain CRSSP for a number of countermeasures, by relying on the notions of Independence,
Syntactic Independence, Safe Nesting, and Trapped Speculation.

5 Countermeasures Analysis

In this section, we present a comprehensive analysis of the security guarantees provided by Spec-
tre countermeasures implemented in major compilers. Our analysis covers 9 countermeasures
(summarized in Section 5.1) and 5 classes of Spectre attacks: Spectre-PHT [39], Spectre-BTB [39],
Spectre-RSB [41, 43], Spectre-STL [35], and Spectre-SLS [7]. Using our secure compilation frame-
work, we precisely characterize the security guarantees provided by these countermeasures against
the five speculative semantics from Section 2 and their combinations.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 31. Publication date: January 2025.

31:18 Xaver Fabian, Marco Patrignani, Marco Guarnieri, and Michael Backes

Table 2. Analyzed compiler countermeasures.

Name Symbol Base Semantics Source

Fences for Returns Straight-Line J·Kf
SLS SLS GCC/Clang

Retpoline for Jumps J·Krpl
J J GCC/Clang/[36]

Retpoline with fence for Jumps J·Krpl𝑓
J J Gcc/[36]

Retpoline for Returns J·Krpl
R R

Gcc/[43]
Fences for Returns J·Kf

R R
[43]

Fences for Stores J·Kf
S S [37]

Ultimate SLH for Branches J·KUSLH
B B [59] (extends Clang’s SLH)

Strong SLH for Branches J·KSSLH
B B [49] (extends Clang’s SLH)

Fences for Branches J·Kf
B B ICC/Clang

Theorem 4 plays a key role in this analysis since we use it to lift security guarantees from simpler
semantics to their combinations, thereby significantly reducing the number of secure compilation
proofs that need to be carried out. We remark that to apply the lifting theorem, which allows us to
lift the security guarantees of the compiler to stronger semantics, we need to show (1) Security in
Source, (2) Independence in Extension, and (3) Safe Nesting, which is what we do next.

First, we tackle Security in Source and prove that the compilers are RSSP w.r.t. their base specula-
tive semantics (Section 5.2). Then we focus on Independence, and show Syntactic Independence for
four of our compilers and fall-back to full Independence proofs for the remaining five (Section 5.3).
Next, we analyze Safe Nesting and show that Trapped Speculation (Definition 11) applies in all
cases except two (Section 5.4). Finally, we combine these results by evaluating the strongest security
guarantees that can be achieved for these compilers using Theorem 4 (Section 5.5).

5.1 The Compilers

Table 2 summarizes the Spectre countermeasures that we analyze. These countermeasures are
often implemented as compilation passes at the end of the compilation process (e.g., SLH is a
MachineFunctionPass in Clang). Next, we describe the compilers in more detail and refer to our
technical report for their full definitions.

Fences Against Straight-Line Speculation (J·Kf
SLS). Modern CPUs can speculatively bypass ret

instructions [5, 7]. Compilers like Gcc and Clang (with option -mharden-sls=all) prevent this by
injecting a speculation barrier after every ret instruction. Since the ret instruction is an uncon-
ditional change in control flow, the barrier4 will not be executed architecturally but only when
straight-line speculation is happening. We model this countermeasure in the J·Kf

SLS compiler that
inserts a barrier after every ret instruction.

Retpoline for Indirect Jumps (J·Krpl
J , J·Krpl𝑓

J). Spectre-BTB attacks [39] exploit speculation over
indirect jumps. The retpoline countermeasure [36] replaces all indirect jumps in the code with a
return trampoline, i.e., with a construct that traps the speculation in an infinite loop. Retpoline is
available in all general compilers like Clang (-mretpoline) and Gcc (with option -mindirect-branch)

4For x86, the int3 single-byte instruction is used to reduce the binary size.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 31. Publication date: January 2025.

Do You Even Lift? Strengthening Compiler Security Guarantees against Spectre Attacks 31:19

and is widely deployed because current developed hardware mitigations are not enough to protect
against indirect jump speculation [10]. We consider two models of the retpoline countermeasure.
The J·Krpl

J compiler replaces every indirect jump instruction jmp 𝑒 with a return trampoline. Addi-

tionally, we consider the J·Krpl𝑓
J compiler, which inserts an additional fence after ret instructions in

trampolines (to prevent straight-line speculation). This compiler corresponds to activating both
flags -mindirect-branch and -mharden-sls=all in Gcc.

Retpoline for Returns (J·Krpl
R
). A variant of the retpoline countermeasure has been proposed

to prevent Spectre-RSB attacks [43]. This countermeasure (implemented in Gcc with option -

mfunction-return) replaces each ret instruction with a return trampoline; trapping misprediction
caused by ret instructions. We modeled this countermeasure in the J·Krpl

R
compiler.

Fences for Returns (J·Kf
R
). Maisuradze and Rossow [43] propose to add an lfence instruction

after every call instruction. This ensures that mis-speculations over ret instructions involving the
Return Stack Buffer will always land on one of the injected speculation barriers, thereby preventing
speculative leaks. We model this countermeasure in the J·Kf

R
compiler, which replaces every call 𝑓

instruction with call 𝑓 ; spbarr.

Fences for Stores (J·Kf
S). To prevent speculation over store-to-load bypasses [37] (also known as

Spectre-STL), Intel suggested to insert the lfence instruction after every store, thereby ensuring
that all stores are committed to main memory and preventing speculation. However, no mainstream
compiler implements this countermeasure due to the high performance overhead. We model this
countermeasure in the J·Kf

S compiler, which replaces (1) every store 𝑥, 𝑒 instruction with store 𝑥,
𝑒; spbarr, and (2) every storeprv 𝑥, 𝑒 instruction with storeprv 𝑥, 𝑒; spbarr.

(Strong) Speculative Load Hardening (SSLH, J·KSSLH
B). Modern CPUs speculate over the outcome of

branch instructions [39]. Clang (with option -mspeculative-load-hardening) protects against these
speculative leaks by (1) using a speculation flag that tracks whenever misprediction is currently
happening or not, and (2) using the flag to conditionally mask loads and stores to prevent the leaks
[16]. Patrignani and Guarnieri [49] investigated the security of SLH and showed it insecure with
respect to B. They proposed an improved version called strong-SLH and prove it secure with
respect to B semantics. We evaluate their compiler5 J·KSSLH

B in our framework to see if we can lift
the security guarantees to stronger semantics.

Ultimate Speculative Load Hardening (USLH, J·KUSLH
B). Zhang et al. [59] showed that variable-

latency arithmetic instructions can leak secret information under speculation, and this is not
prevented by speculative-load hardening [16] or by its strong-variant J·KSSLH

B [49]. To prevent these
speculative leaks, they propose the “ultimate speculative load hardening” compiler, which extends
strong-SLH by additionally masking inputs to variable-latency arithmetic instructions.
We modelled the core aspects of ultimate USLH in the J·KUSLH

B compiler. For this, we extended
𝜇Asm to support a dedicated instruction 𝑥 ←VL 𝑦 𝑜𝑝 𝑧 denoting variable-latency computations.
Furthermore, we extended 𝜇Asm events to include a new observation 𝑦 op 𝑧 that is emitted by the
new instruction 𝑥 ←VL 𝑦 𝑜𝑝 𝑧.

Instructions 𝑖 ::= · · · | 𝑥 ←VL 𝑦 𝑜𝑝 𝑧 𝜇arch. Acts. 𝛿 ::= · · · | x op y

5Technically, Patrignani and Guarnieri [49] targeted a While language while we have an assembly-like language 𝜇Asm.
However, the translation is straightforward.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 31. Publication date: January 2025.

31:20 Xaver Fabian, Marco Patrignani, Marco Guarnieri, and Michael Backes

These extensions augment the constant time observer (used in our model in Section 2.1 as well as
in the strong-SLH formalization in [49]) to capture leaks related to variable-latency instructions.
We denote the B semantics extended with the new observer as 𝑐𝑡+𝑣𝑙

B , and we have the following
leakage ordering: 𝑐𝑡

B ⊑ 𝑐𝑡+𝑣𝑙
B .

Fences for Branches (J·Kf
B). Another approach to prevent leaks due to branch misprediction

is injecting lfence instructions after branch instructions. Compilers like Intel ICC (with flag
-mconditional-branch=all-fix) and Clang (with flag -x86-speculative-load-hardening-lfence) imple-
ment this countermeasure. This countermeasure was already modelled (and proved secure for B)
in [49] as J·Kf

B
5, which replaces every beqz 𝑥, 𝑙 with beqz 𝑥, 𝑙 ; spbarr and we want to investigate

the applicability of the lifting theorem to J·Kf
B’s security guarantees as well.

5.2 Security of the Compilers

Here, we report the results of the security analysis of each compiler with respect to their base
speculative semantics, as indicated in Table 2. Theorem 5 states that each compiler is RSSP w.r.t. its
base speculative semantics. Even though we present all results altogether, we remark that each
point in Theorem 5 corresponds to an independent secure compilation proof.

Theorem 5 (Compiler Security). The following statements hold:
• (SLS: Fence is secure) SLS ⊢ J·K

f
SLS : RSSP

• (R: Retpoline is secure)
R
⊢ J·Krpl

R
: RSSP

• (R: Fence is secure)
R
⊢ J·Kf

R
: RSSP

• (J: Retpoline is secure) J ⊢ J·K
rpl
J : RSSP

• (J: Retpoline with fence is secure) J ⊢ J·K
rpl𝑓
J : RSSP

• (S: Fence is secure) S ⊢ J·K
f
S : RSSP

• (B: USLH is secure) 𝑐𝑡+𝑣𝑙
B ⊢ J·KUSLH

B : RSSP
• (B: SSLH is secure [49]) B ⊢ J·K

SSLH
B : RSSP

• (B: Fence is secure [49]) B ⊢ J·K
f
B : RSSP

5.3 Independence of the Compilers

We now investigate whether our compilers satisfy the Independence in Extension condition. Due
to space constraints, we do not report on the Independence and Syntactic Independence for all
our compilers and combinations and refer the interested reader to our companion report. Instead,
Theorem 6 reports the strongest possible semantics for whichwe can prove (Syntactic) Independence
for each compiler.

Theorem 6 (Compiler Independence). The following statements hold:
• (SLS: Fence Independence) B+J+S+SLS ⊢ J·K

f
SLS : 𝑆𝐼

• (R: Fence Independence) B+J+S+R ⊢ J·K
f
R
: 𝑆𝐼

• (S: Fence Independence) B+J+S+R ⊢ J·K
f
S : 𝑆𝐼 and B+J+S+SLS ⊢ J·K

f
S : 𝑆𝐼

• (B: Fence Independence) B+J+S+R ⊢ J·K
f
B : 𝑆𝐼 and B+J+S+SLS ⊢ J·K

f
B : 𝑆𝐼

• (B: USLH Independence) B+J+S+R ⊢ J·K
USLH
B : 𝐼 and B+J+S+SLS ⊢ J·K

USLH
B : 𝐼

• (B: SSLH Independence) B+J+S+R ⊢ J·K
SSLH
B : 𝐼 and B+J+S+SLS ⊢ J·K

SSLH
B : 𝐼

• (R: Retpoline Independence) B+J+S+R ⊢ J·K
rpl
R

: 𝐼

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 31. Publication date: January 2025.

Do You Even Lift? Strengthening Compiler Security Guarantees against Spectre Attacks 31:21

• (J: Retpoline Independence) B+J+S+R ⊢ J·K
rpl
J : 𝐼

• (J: Retpoline with Fence Independence) B+J+S+R ⊢ J·K
rpl𝑓
J : 𝐼 and B+J+S+SLS ⊢ J·K

rpl𝑓
J : 𝐼

As stated in Theorem 6, for compilers J·Kf
SLS, J·K

f
R
, J·Kf

S , and J·K
f
B, we directly proved that Syntactic

Independence holds even for the strongest possible combined semantics. Given that Syntactic
Independence implies Independence (Lemma 1), this allows us to derive Independence results for
all these compilers through simple syntactic checks.
For the J·Krpl

J , J·Krpl𝑓
J and J·Krpl

R
compilers, instead, we have to fall back to a full Independence

proof for the strongest semantics. The reason is that these compilers add ret instructions to the
code which could interact with R or SLS, i.e., injInst (J·K) ∩ specInst (

R
) = {ret}, which violates SI.

However, for weaker combinations not including R or SLS, SI applies.
We also remark that Independence does not hold for the retpoline compiler J·Krpl

J and the straight-

line speculation semantics SLS, i.e., SLS ⊬ J·K
rpl
J : 𝐼 . The reason is that the ret instructions

injected by J·Krpl
J as part of return trampolines can be speculatively bypassed under SLS. The

additional speculation barrier injected by the strengthened compiler J·Krpl𝑓
J fixes this issue and

allows recovering Independence w.r.t. SLS as well, i.e., SLS ⊢ J·K
rpl𝑓
J : 𝐼 .

Finally, for the SLH compilers J·KUSLH
B and J·KSSLH

B , we again had to perform full Independence
proofs since these compilers inject instructions, which violate SI requirements, for tracking the
speculation flag and for masking store and load instructions.

5.4 Safe Nesting of the Compilers

The last condition to fulfill for lifting security guarantees is Safe Nesting. Rather than directly
proving Safe Nesting, we study which compilers trap speculation according to Definition 11.
Theorem 7 precisely characterize which compilers enjoy this property. Combining Theorem 7 with
the fact that trapped speculation implies Safe Nesting (Lemma 2), gives us a precise characterization
of which compilers enjoy the Safe Nesting property.

Theorem 7 (Compiler Safe Nesting). The following statements hold:
• (SLS: Fence traps speculation) SLS ⊢ J·K

f
SLS : trappedSpec

• (R: Retpoline traps speculation)
R
⊢ J·Krpl

R
: trappedSpec

• (R: Fence traps speculation)
R
⊢ J·Kf

R
: trappedSpec

• (J: Retpoline traps speculation) J ⊢ J·K
rpl
J : trappedSpec

• (J: Retpoline with fence traps speculation) J ⊢ J·K
rpl𝑓
J : trappedSpec

• (S: Fence traps speculation) S ⊢ J·K
f
S : trappedSpec

• (B: Fence traps speculation) B ⊢ J·K
f
B : trappedSpec

For all our compilers that rely on inserting spbarr as a countermeasure, proving Trapped
Speculation was easy since the speculation barriers immediately stop any speculative transaction.
In contrast, for the compilers that inject retpolines, Trapped Speculation follows from the fact that
the return-trampoline traps speculation in a loop that does not produce visible events.
Trapped Speculation, however, does not hold for SLH-based countermeasures because these

countermeasures do not block speculative execution but rather prevent leaks during speculation. For
J·KSSLH

B and J·KUSLH
B , therefore, we need to directly prove Safe Nesting for each combined semantics,

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 31. Publication date: January 2025.

31:22 Xaver Fabian, Marco Patrignani, Marco Guarnieri, and Michael Backes

which requires reasoning about all interactions of component semantics. Theorem 8 reports the
strongest semantics for which safe nesting holds.

Theorem 8 (Compiler Safe Nesting). The following statements hold:
• (B: SSLH Safe Nesting) B+S+R ⊢ J·K

SSLH
B : safeN and B+S+SLS ⊢ J·K

SSLH
B : safeN

• (B: USLH Safe Nesting) ct+vl
B+S+R ⊢ J·K

USLH
B : safeN and ct+vl

B+S+SLS ⊢ J·K
USLH
B : safeN

Intuitively, Safe Nesting holds for the cases in Theorem 8 because the SLH compilers preserve the
invariant that the speculation flag is correctly set even when considering speculative transactions
caused by semantics like S or R

.
In contrast, Safe Nesting does not hold for combinations including J. This follows from the

fact that SSLH/USLH compilers do not correctly propagate the value of the speculation flag during
indirect jumps. As we state in Theorem 9, this also leads to both J·KSSLH

B and J·KUSLH
B being insecure

w.r.t. any combination of semantics containing J and B, i.e., any speculative semantics supporting
branch and indirect jump speculation.

Theorem 9 (SLH Insecurity w.r.t J). For any speculative semantics such that B+J ⊑ ,
⊬ J·KSSLH

B : RSNIP and ⊬ J·KUSLH
B : RSNIP .

We prove Theorem 9 by finding a source program (which we present in the companion report
for space constraints), that after compilation with J·KSSLH

B /J·KUSLH
B still leaks due to indirect jump

speculation. The gist of the insecure program is that while the target of the indirect jump is masked
by J·KSSLH

B /J·KUSLH
B (to prevent leaks), this does not prevent speculation of indirect jumps that can

be used to bypass the instructions tracking the speculation flag inserted by the compiler. Note that
this issue could be fixed by relying on hardware support for control-flow-integrity like Intel-CET
[52] or ARM-BTI [8], which restrict the targets of indirect jumps to a fixed set of addresses even
under speculation. This should be sufficient to ensure that attackers cannot speculatively bypass
instructions setting the speculation flags and it should allow us to derive Safe Nesting for the SLH
compilers w.r.t. combinations including J. We leave investigating this for future work.

5.5 Lifting Security Guarantees

We conclude our security analysis by using the results from Sections 5.2–5.4 togetherwith Theorem 4
to study how far we can lift the security guarantees provided by each compiler. This allows us to
precisely characterize the security of these countermeasures even under stronger semantics.
Theorem 10 summarizes the strongest lifted security guarantees one can derive for each of the

studied compilers using our lifting theorem (Theorem 4). After an explanation of the result, we
present it visually in Figure 4.

Theorem 10 (Lifted security guarantees). The following statements hold:

• (S: Fence) S, B+J+R ⊢ J·K
f
S : CRSSP and S, B+J+SLS ⊢ J·K

f
S : CRSSP

• (SLS: Fence) SLS, B+J+S ⊢ J·K
f
SLS : CRSSP

• (R: Fence)
R
, B+J+S ⊢ J·K

f
R
: CRSSP

• (J: Retpoline) J, B+S+R ⊢ J·K
rpl
J : CRSSP

• (J: Retpoline with fences) J, B+S+R ⊢ J·K
rpl𝑓
J : CRSSP and J, B+S+SLS ⊢ J·K

rpl𝑓
J : CRSSP

• (R: Retpoline)
R
, B+J+S ⊢ J·K

rpl
R

: CRSSP
• (B: Fence) B, J+S+R ⊢ J·K

f
B : CRSSP and B, J+S+SLS ⊢ J·K

f
B : CRSSP

• (B: USLH) ct+vl
B , ct+vl

S+R ⊢ J·K
USLH
B : CRSSP and ct+vl

B , ct+vl
S+SLS ⊢ J·K

USLH
B : CRSSP

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 31. Publication date: January 2025.

Do You Even Lift? Strengthening Compiler Security Guarantees against Spectre Attacks 31:23

• (B: SSLH) B, S+R ⊢ J·K
SSLH
B : CRSSP and B, S+SLS ⊢ J·K

SSLH
B : CRSSP

For all our compilers except the SLH ones, we can lift the security guarantees up to B+J+S+R
or B+J+S+SLS, the two strongest combined speculative semantics (as shown in Figure 2), i.e., the
strongest attacker models considered in our paper.

For the SLH compilers J·KUSLH
B and J·KSSLH

B , we are able to lift the security guarantees only up to

B+S+R and B+S+SLS. Lifting the guarantees of J·K
USLH
B and J·KSSLH

B to stronger semantics including
J is not possible because Safe Nesting is not fulfilled (cf. Section 5.4).
Finally, for J·Kf

SLS, J·K
f
R
and J·Krpl

R
, we cannot lift security to both B+J+S+R and B+J+S+SLS because

we cannot compose
R
and SLS due to limitations of the combination framework (cf. Section 2.4).

B+J+S+R B+J+S+SLS

J+S+R B+J+R B+S+R B+J+S B+J+SLS B+S+SLS J+S+SLS

J+R S+R B+R J+S B+J B+S B+SLS J+SLS S+SLS

𝑁𝑆

R J S B SLS

Compilers

J·Kf
R
, J·Krpl

R
, J·Krpl

J

J·Kf
B, J·K

f
S , J·K

rpl𝑓
J

J·Kf
SLS

J·KUSLH
B , J·KSSLH

B

Fig. 4. On the left is a visualization of Theorem 10, where the list of compilers is connected with a dashed

line to the strongest semantic their security is lifted to. On the right, the blue area of the leakage ordering

represents where Theorem 4 is applicable for J·Kf
SLS. We can lift the security guarantees of J·Kf

SLS from the

base semantics SLS to all composed semantics in the highlighted area.

We remark that our lifting theorem allowed us to derive strong compiler guarantees, i.e., CRSSP
w.r.t. B+J+S+R or B+J+S+SLS,without requiring new secure compilation proofs, thereby significantly
reducing the proving effort. Note that carrying out secure compilation proofs can be complex
because each proof requires setting up multiple cross-language relations (for states, values, actions,
etc.) [23] as well as defining an invariant that holds for speculation (both in securely-compiled
code and in attacker code) [49].

We also stress that the lifted security guarantees from Theorem 10 are expressed in terms of the
CRSSP criterion, not in terms of the stronger RSSP criterion. That is, the lifted security guarantees
only holds for programs that are initially secure w.r.t. the extension semantics since the compiler
might not prevent leaks under the extension semantics already present in the source program.
As a concrete example, we use Figure 4 to visualize (1) the effects of Theorem 10 and (2), this

lifting for the fence compiler J·Kf
SLS. With respect to (1), the list of compilers on the left is connected

to the strongest semantics to which they can be lifted. With respect to (2), the blue shaded area

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 31. Publication date: January 2025.

31:24 Xaver Fabian, Marco Patrignani, Marco Guarnieri, and Michael Backes

depicts the semantics to which we can lift the security guarantees using Theorem 4 together with
Independence and Safe Nesting. Our lifting approach allowed us to derive secure compilation
results for the 7 semantics in the shaded area with only 1 secure compilation proof (for the base
semantics SLS), 1 simple proof of Trapped Speculation, and other 6 simple proofs of Syntactic
Independence (by syntactic inspection). Without our approach, proving the same results would
have required 7 fully-fledged secure compilation proofs. We remark, that the compiler J·Kf

SLS only
inserts fences against SLS and we require the precondition of B+J+SLS ⊢ 𝑃 : RSS of CRSSP to
ensure security w.r.t to the other semantics. Thus, CRSSP states that the security guarantees of J·Kf

SLS
are preserved for the combinations. A way of removing this precondition would be by composing
different compiler countermeasures together, which we discuss in the following section.

6 Discussion

Scope of the Security Analysis. Lifting the results of our security analysis to real-world CPUs and
compilers is only possible to the extent that our models faithfully represent the target systems.
In terms of CPUs and speculative leaks, any information flow in the target CPU that is not

captured by our speculative semantics (and their combinations) might invalidate our security
proofs in practice. In particular, all speculative semantics from Table 1 consider a commonly-used
attacker model [3, 17, 21, 24, 29–31, 49, 56] that captures a cache-based attacker by exposing
control-flow and memory accesses along non-speculative and speculative execution paths. Any
leaks not reflected in control-flow and memory accesses might, therefore, be missed by our models.
Regarding speculation, for the two new semantics modeling speculation over indirect jumps (J) and
straight-line speculation (SLS), the main simplification is in the modeling of speculative indirect
jumps where we over-approximate the effect of prediction structures (e.g., BTB) by allowing any
speculative target. Note, however, that we only support valid instructions in the compiled program
as targets of speculative jumps; speculatively jumping in the middle of program instructions is
not captured by J. For the other semantics (B, S, and R

), we directly employ state-of-the-art
models from prior work, whose limitations are discussed in [24, 31].
In terms of compilers, any divergence between our models in Section 5.1 and their actual

implementations might, again, invalidate our results. One important simplification of our SLH
compilers J·KUSLH

B and J·KSSLH
B is that the speculation flag is always stored in a dedicated register.

In contrast, the actual SLH implementation in Clang [16] uses a general purpose register for
storing the speculation flag which, in some cases, might be spilled to memory. This might result in
unexpected leaks in case speculation over store-bypasses (S) might result in loading a stale value
for the speculation flag from memory.

Using the Framework. At this point, the reader may wonder how one can use this framework
when the next version of Spectre comes out. For example, recent work [46] has discovered that
CPUs also speculate on division operations (since this does not lead to actual attacks, we ignored
this speculative semantics in our security analysis). Let us indicate a semantics capturing leaks
resulting from that speculation over divisions with D. The ordering of Figure 2 would have
many new elements, including a top element B+J+S+R+D. Since none of the considered compilers
introduce a division operation, it would be sufficient to prove Syntactic Independence for them,
reuse all the theorems from Sections 5.2 and 5.4 and then apply Theorem 4 in order to obtain that
those compilers are CRSSP for the new speculative semantics B+J+S+R+D.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 31. Publication date: January 2025.

Do You Even Lift? Strengthening Compiler Security Guarantees against Spectre Attacks 31:25

Limitations. Our framework currently suffers from three core limitations:
• Composing semantics: Some of the speculative semantics studied in this paper cannot be
composed together, e.g.,

R
and SLS. This is due to a restriction of the underlying combina-

tion framework [24], which does not allow combining semantics that speculate on the same
instruction. This limits the applicability of our lifting theorem in some cases, e.g., we cannot
lift security guarantees from

R
to a semantics containing also SLS (and vice versa).

• Target security properties: Our framework is currently limited to compilers that focus on
preventing different classes of speculative leaks, which is reflected in some core aspects
of our lifting theorems (e.g., its reliance on RSSP and CRSSP). We believe, however, that
our framework can be extended to other classes of security properties beyond speculative
leaks, such as memory safety (MS) [9] and cryptographic constant time (CT, equivalent
to our 𝑁𝑆 semantics) [40]. In the case of MS and CT, however, existing semantics that
express these leaks can be composed in a much simpler way than speculative semantics,
without any nesting. Thus, proving that e.g., countermeasures for MS are CRSSP for MS+CT,
only requires reasoning about Independence, because Safe Nesting trivially holds. We leave
reasoning about these results (and composing the resulting semantics with the presented
ones) as future work.
• From Single to Multiple Compilers: Our lifting theorem preserves CRSSP, which means that the
lifted security guarantees only hold for programs that are initially secure for the extension
semantics. To lift this restriction, one could compose multiple compilers where each compiler
prevents leaks for a specific speculative semantics. The current framework, however, does
not provide a way of securely composing compiler passes. Despite this, we believe that this
framework provides a first step towards reasoning about the application of several Spectre
countermeasures. In fact, we speculate that we can use existing results on composing secure
compilers [42] to prove that if a compiler J·K1 is CRSSP with respect to a semantics, and
another compiler J·K2 is CRSSP with respect to the same semantics, then the two can be
composed (

q
J·K2

y
1) and the result is CRSSPwith respect to the same semantics. The presented

work can then be used to (1) first lift single compiler countermeasures to their strongest
semantics and then (2) compose those countermeasures to obtain that the composition is also
CRSSP for the strongest semantics. This would allow for the verification of full compilers,
instead of single compiler passes as we do here. We leave investigating the theory of secure
compilation applied to speculative semantics, as well as its application to the results of this
paper via points (1) and (2) for future work.

7 Related Work

Speculative Execution Attacks. After Spectre [39] has been disclosed to the public in 2018, re-
searchers have identified many other speculative execution attacks [6, 10, 13, 41, 43, 57, 58]. We
refer the reader to Canella et al. [14] for a survey of existing attacks.

Speculative Semantics. There are many semantics capturing the effects of speculatively executed
instructions [11, 17, 20, 22, 24, 29, 31, 44, 49, 50, 56]. These semantics differ in the level of microarchi-
tectural details that are modelled (e.g., from program-level models [31] to those closer to simplified
CPU designs [29]) and the languages that are used (e.g., frommodels targetingWhile languages [49]
to those targeting assembly-style languages [31]); see [18] for a survey of speculative semantics.
As indicated in Table 1, our branch speculation semantics B is from [31], whereas our store-

bypass speculation S and return misprediction
R
semantics are from [24]. These semantics

and our new semantics J and SLS all follow the always-mispredict strategy [31], which explore
mispredicted paths for a fixed number of steps before continuing the architectural execution.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 31. Publication date: January 2025.

31:26 Xaver Fabian, Marco Patrignani, Marco Guarnieri, and Michael Backes

Security Properties for speculative leaks. Researchers have proposed many program-level proper-
ties for security against speculative leaks, which can be classified into three main groups [18]:

(1) Non-interference definitions ensure the security of speculative and non-speculative instruc-
tions. E.g., speculative constant-time [17] extends constant-time to transient instructions as well.

(2) Relative non-interference definitions [19, 29, 31, 32, 54] ensure that transient instructions do
not leak more information than non-transient ones. E.g., speculative non-interference [31], which
we inherit from the secure compilation framework we build on [49], restricts the information leaked
by speculatively executed instructions (without constraining what can be leaked non-speculatively).

(3) Definitions that formalise security as a safety property [49, 50], which may over-approximate
definitions from the groups above.

Secure compilation for speculative leaks. Our secure compilation framework extends the work
by Patrignani and Guarnieri [49] (which is restricted to branch speculation B) with support for
new speculative semantics and their combinations [24]. In particular, the CRSSP secure compilation
criterion from Definition 9 is an extension of the RSSP criterion from [49].
In Section 5, we analyzed Spectre countermeasures implemented in mainstream compilers (or

variants of them) or suggested by hardware vendors. Next, we review further countermeasures.
Barthe et al. [12] and Shivakumar et al. [53] extend Jasmin [3, 4] to protect constant-time programs

against leaks induced by branch speculation. In contrast, Blade [56] is a countermeasure against
Spectre-PHT targeting Wasm [33] which uses a flow-sensitive security-type system to minimize the
amount of protect statements (either fences or SLH) needed to secure programs. Differently from
our work, which targets speculative non-interference, these works target speculative constant-time.

Swivel [45] is a compiler hardening pass for Wasm that protects against multiple Spectre attacks
(Spectre-PHT, Spectre-BTB, and Spectre-RSB). However, it lacks a formal model and security proof.

In concurrent work, Mosier et al. [44] proposed Serberus, a set of compiler passes that—in
combination with hardware support (e.g., Intel CET-IBT and a shadow stack for return addresses)—
offer protection against Spectre-PHT, Spectre-BTB, Spectre-RSB, Spectre-STL and predictive store
forwarding [6]. For any whole program satisfying static constant time (a stricter variant of constant-
time), Serberus ensures that its compiled counterpart is speculative constant-time. Differently
from our security analysis, where we lift secure compilation guarantees from weaker semantics to
stronger combined semantics, Serberus’ security proof directly targets a speculative semantics incor-
porating all supported speculation mechanisms. Their proof already targets a semantics at the “top”
of the leakage order and does not need lifting (until the discovery of new speculation mechanisms).
Hetterich et al. [34] proposes switchpoline, an alternative to retpoline, to protect ARM cores

from Spectre-BTB. It transforms indirect calls into direct calls and uses a switch statement to select
the correct call target. Interestingly, the authors argue about the importance of compatible counter-
measures and ensure that switchpoline is fully compatible with other Spectre countermeasures,
which is in line with our Independence property (Definition 7).

8 Conclusion

This paper presented a secure compilation framework for reasoning about the security against leaks
introduced by different speculationmechanismsmodeled as (combinations of) speculative semantics.
In particular, we developed a lifting theorem that allows us to lift a compiler’s security guarantees
from a weaker base speculative semantics to a stronger extended speculative semantics that
accounts for more speculation mechanisms. Additionally, we precisely characterized the security
guarantees provided by 9 Spectre-countermeasures implemented in mainstream compilers against
23 different speculative semantics covering combinations of 5 different speculation mechanisms.
Our lifting theoremwas instrumental in allowing us to precisely characterize each countermeasure’s

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 31. Publication date: January 2025.

Do You Even Lift? Strengthening Compiler Security Guarantees against Spectre Attacks 31:27

guarantees against all combined semantics without requiring additional secure compilation proofs
(beyond the proof of security against each compiler’s base semantics).

Acknowledgments

This work was partially supported by the Spanish Ministry of Science and Innovation under the
project TED2021-132464B-I00 PRODIGY; the Spanish Ministry of Science and Innovation under the
Ramón y Cajal grant RYC2021-032614-I; the Spanish Ministry of Science and Innovation under the
project PID2022-142290OB-I00 ESPADA; the Italian Ministry of Education through funding for the
Rita Levi Montalcini grant (call of 2019); as well as a gift from Intel.

References

[1] Martín Abadi. 1999. Secrecy by Typing in Security Protocols. J. ACM (1999). https://doi.org/10.1145/324133.324266
[2] Carmine Abate, Roberto Blanco, Deepak Garg, Catalin Hritcu, Marco Patrignani, and Jérémy Thibault. 2019. Journey

Beyond Full Abstraction: Exploring Robust Property Preservation for Secure Compilation. In Proceedings of the 32nd
IEEE Computer Security Foundations Symposium (CSF ’19). IEEE. https://doi.org/10.1109/CSF.2019.00025

[3] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Arthur Blot, Benjamin Grégoire, Vincent Laporte, Tiago Oliveira,
Hugo Pacheco, Benedikt Schmidt, and Pierre-Yves Strub. 2017. Jasmin: High-Assurance and High-Speed Cryptography.
In Proceedings of the 24th ACM SIGSAC Conference on Computer and Communications Security (CCS ’17). ACM.
https://doi.org/10.1145/3133956.3134078

[4] José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Benjamin Grégoire, Adrien Koutsos, Vincent Laporte, Tiago
Oliveira, and Pierre-Yves Strub. 2020. The last mile: High-assurance and high-speed cryptographic implementations.
In 2020 IEEE Symposium on Security and Privacy (SP) (S&P ’20). IEEE. https://doi.org/10.1109/SP40000.2020.00028

[5] AMD. 2020. Whitepaper Straight-line Speculation. https://www.amd.com/system/files/documents/technical-guidance-
for-mitigating-branch-type-confusion.pdf.

[6] AMD. 2021. Security analysis of AMD predictive store forwarding. https://www.amd.com/system/files/documents/
security-analysis-predictive-store-forwarding.pdf. Accessed: 2024-03-11.

[7] ARM. 2020. Whitepaper Straight-line Speculation. https://developer.arm.com/documentation/102825/0100/.
[8] ARM. 2021. Arm Armv9-A A64 Instruction Set Architecture. https://developer.arm.com/documentation/100076/0100/

A64-Instruction-Set-Reference/A64-General-Instructions/BTI?
[9] Arthur Azevedo de Amorim, Cătălin Hriţcu, and Benjamin C. Pierce. 2018. The Meaning of Memory Safety. In Principles

of Security and Trust (POST ’18), Lujo Bauer and Ralf Küsters (Eds.). Springer. https://doi.org/10.1007/978-3-319-89722-
6_4

[10] Enrico Barberis, Pietro Frigo, Marius Muench, Herbert Bos, and Cristiano Giuffrida. 2022. Branch History Injection: On
the Effectiveness of Hardware Mitigations Against Cross-Privilege Spectre-v2 Attacks. In Proceedings of the 31st USENIX
Security Symposium (USENIX Security ’22). USENIX Association. https://www.usenix.org/conference/usenixsecurity22/
presentation/barberis

[11] Gilles Barthe, Marcel Böhme, Sunjay Cauligi, Chitchanok Chuengsatiansup, Daniel Genkin, Marco Guarnieri, David Ma-
teos Romero, Peter Schwabe, David Wu, and Yuval Yarom. 2024. Testing side-channel security of cryptographic
implementations against future microarchitectures. In Proceedings of the 2024 ACM SIGSAC Conference on Computer
and Communications Security (CCS ’24). ACM.

[12] Gilles Barthe, Sunjay Cauligi, Benjamin Grégoire, Adrien Koutsos, Kevin Liao, Tiago Oliveira, Swarn Priya, Tamara
Rezk, and Peter Schwabe. 2021. High-Assurance Cryptography in the Spectre Era. In Proceedings of the 42nd IEEE
Symposium on Security and Privacy (S&P ’21). IEEE. https://doi.org/10.1109/SP40001.2021.00046

[13] Atri Bhattacharyya, Alexandra Sandulescu, Matthias Neugschwandtner, Alessandro Sorniotti, Babak Falsafi, Mathias
Payer, and Anil Kurmus. 2019. SMoTherSpectre: Exploiting Speculative Execution through Port Contention. In
Proceedings of the 26th ACM SIGSAC Conference on Computer and Communications Security (CCS ’19). ACM. https:
//doi.org/10.1145/3319535.3363194

[14] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Benjamin von Berg, Philipp Ortner, Frank Piessens,
Dmitry Evtyushkin, and Daniel Gruss. 2019. A Systematic Evaluation of Transient Execution Attacks and Defenses. In
Proceedings of the 28th USENIX Security Symposium (USENIX Security ’19). USENIX Association. https://www.usenix.
org/conference/usenixsecurity19/presentation/canella

[15] Claudio Canella, Sai Manoj Pudukotai Dinakarrao, Daniel Gruss, and Khaled N. Khasawneh. 2020. Evolution of
Defenses against Transient-Execution Attacks. In Proceedings of the 2020 on Great Lakes Symposium on VLSI (GLSVLSI
’20). ACM. https://doi.org/10.1145/3386263.3407584

[16] Chandler Carruth. 2018. Speculative Load Hardening. https://llvm.org/docs/SpeculativeLoadHardening.html

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 31. Publication date: January 2025.

https://doi.org/10.1145/324133.324266
https://doi.org/10.1109/CSF.2019.00025
https://doi.org/10.1145/3133956.3134078
https://doi.org/10.1109/SP40000.2020.00028
https://www.amd.com/system/files/documents/technical-guidance-for-mitigating-branch-type-confusion.pdf
https://www.amd.com/system/files/documents/technical-guidance-for-mitigating-branch-type-confusion.pdf
https://www.amd.com/system/files/documents/security-analysis-predictive-store-forwarding.pdf
https://www.amd.com/system/files/documents/security-analysis-predictive-store-forwarding.pdf
https://developer.arm.com/documentation/102825/0100/
https://developer.arm.com/documentation/100076/0100/A64-Instruction-Set-Reference/A64-General-Instructions/BTI?
https://developer.arm.com/documentation/100076/0100/A64-Instruction-Set-Reference/A64-General-Instructions/BTI?
https://doi.org/10.1007/978-3-319-89722-6_4
https://doi.org/10.1007/978-3-319-89722-6_4
https://www.usenix.org/conference/usenixsecurity22/presentation/barberis
https://www.usenix.org/conference/usenixsecurity22/presentation/barberis
https://doi.org/10.1109/SP40001.2021.00046
https://doi.org/10.1145/3319535.3363194
https://doi.org/10.1145/3319535.3363194
https://www.usenix.org/conference/usenixsecurity19/presentation/canella
https://www.usenix.org/conference/usenixsecurity19/presentation/canella
https://doi.org/10.1145/3386263.3407584
https://llvm.org/docs/SpeculativeLoadHardening.html

31:28 Xaver Fabian, Marco Patrignani, Marco Guarnieri, and Michael Backes

[17] Sunjay Cauligi, Craig Disselkoen, Klaus v. Gleissenthall, Dean Tullsen, Deian Stefan, Tamara Rezk, and Gilles Barthe.
2020. Constant-Time Foundations for the New Spectre Era. In Proceedings of the 41st ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI ’20). ACM. https://doi.org/10.1145/3385412.3385970

[18] Sunjay Cauligi, Craig Disselkoen, Daniel Moghimi, Gilles Barthe, and Deian Stefan. 2022. SoK: Practical Foundations
for Software Spectre Defenses. In Proceedings of the 43rd IEEE Symposium on Security and Privacy (S&P ’22). IEEE.
https://doi.org/10.1109/SP46214.2022.9833707

[19] Kevin Cheang, Cameron Rasmussen, Sanjit Seshia, and Pramod Subramanyan. 2019. A Formal Approach to Secure
Speculation. In Proceedings of the 32nd IEEE Computer Security Foundations Symposium (CSF ’19). IEEE. https:
//doi.org/10.1109/CSF.2019.00027

[20] Robert J. Colvin and KirstenWinter. 2019. AnAbstract Semantics of Speculative Execution for Reasoning About Security
Vulnerabilities. In Proceedings of the 19th Refinement Workshop (Refine ’19). Springer. https://doi.org/10.1007/978-3-
030-54997-8_21

[21] Lesly-Ann Daniel, Sébastien Bardin, and Tamara Rezk. 2021. Hunting the Haunter — Efficient relational symbolic
execution for Spectre with Haunted RelSE. In Proceedings of the 28th Annual Network and Distributed System Security
Symposium (NDSS ’21). The Internet Society.

[22] Craig Disselkoen, Radha Jagadeesan, Alan Jeffrey, and James Riely. 2019. The Code That Never Ran: Modeling
Attacks on Speculative Evaluation. In Proceedings of the 40th IEEE Symposium on Security and Privacy (S&P ’19). IEEE.
https://doi.org/10.1109/SP.2019.00047

[23] Akram El-Korashy, Roberto Blanco, Jeremy Thibault, Adrien Durier, Deepak Garg, and Catalin Hritcu. 2022. SecurePtrs:
Proving Secure Compilation with Data-Flow Back-Translation and Turn-Taking Simulation. In Proceedings of the 35th
IEEE Computer Security Foundations Symposium (CSF ’22). IEEE. https://doi.org/10.1109/CSF54842.2022.9919680

[24] Xaver Fabian, Marco Guarnieri, and Marco Patrignani. 2022. Automatic Detection of Speculative Execution Combina-
tions. In Proceedings of the 29th ACM SIGSAC Conference on Computer and Communications Security (CCS ’22). ACM.
https://doi.org/10.1145/3548606.3560555

[25] Xaver Fabian, Marco Guarnieri, Marco Patrignani, and Michael Backes. 2024. https://github.com/XFabian/secure_
comp_lifting

[26] Xaver Fabian, Marco Patrignani, Marco Guarnieri, and Michael Backes. 2024. Do You Even Lift? Strengthening
Compiler Security Guarantees Against Spectre Attacks. arXiv:2405.10089 [cs.PL] https://arxiv.org/abs/2405.10089

[27] Cédric Fournet, Andrew D. Gordon, and Sergio Maffeis. 2007. A Type Discipline for Authorization Policies. ACM
Trans. Program. Lang. Syst. 29 (2007). https://doi.org/10.1145/1275497.1275500

[28] Andrew D. Gordon and Alan Jeffrey. 2003. Authenticity by Typing for Security Protocols. J. Comput. Secur. 11 (2003).
http://dl.acm.org/citation.cfm?id=959088.959090

[29] Roberto Guanciale, Musard Balliu, and Mads Dam. 2020. Inspectre: Breaking and fixing microarchitectural vulnerabili-
ties by formal analysis. In Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security
(CCS ’20). ACM, 1853–1869. https://doi.org/10.1145/3372297.3417246

[30] Marco Guarnieri, Boris Köpf, Jan Reineke, and Pepe Vila. 2021. Hardware-software contracts for secure speculation. In
Proceedings of the 42nd IEEE Symposium on Security and Privacy (S&P ’21). IEEE. https://doi.org/10.1109/SP40001.2021.
00036

[31] Marco Guarnieri, Boris Köpf, José F. Morales, Jan Reineke, and Andrés Sánchez. 2020. Spectector: Principled Detection
of Speculative Information Flows. In Proceedings of the 41st IEEE Symposium on Security and Privacy (S&P ’20).
https://doi.org/10.1109/SP40000.2020.00011

[32] Shengjian Guo, Yueqi Chen, Peng Li, Yueqiang Cheng, Huibo Wang, Meng Wu, and Zhiqiang Zuo. 2020. SpecuSym:
Speculative Symbolic Execution for Cache Timing Leak Detection. In Proceedings of the 42nd ACM/IEEE International
Conference on Software Engineering (ICSE ’20). ACM. https://doi.org/10.1145/3377811.3380428

[33] Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L. Titzer, Michael Holman, Dan Gohman, Luke Wagner, Alon
Zakai, and JF Bastien. 2017. Bringing the web up to speed with WebAssembly. In Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI ’17). ACM. https://doi.org/10.1145/3062341.
3062363

[34] Lorenz Hetterich, Markus Bauer, Michael Schwarz, and Christian Rossow. 2024. Switchpoline: A Software Mitigation
for Spectre-BTB and Spectre-BHB on ARMv8. In Proceedings of the 19th ACM Asia Conference on Computer and
Communications Security (ASIA CCS ’24). ACM. https://doi.org/10.1145/3634737.3637662

[35] J. Horn. 2018. Speculative execution, variant 4: Speculative store bypass. https://bugs.chromium.org/p/project-
zero/issues/detail?id=1528. Accessed: 2021-04-11.

[36] Intel. 2018. Retpoline: A Branch Target Injection Mitigation. https://www.intel.com/content/dam/develop/external/
us/en/documents/retpoline-a-branch-target-injection-mitigation.pdf

[37] Intel. 2018. Speculative Store Bypass. https://www.intel.com/content/www/us/en/developer/articles/technical/
software-security-guidance/advisory-guidance/speculative-store-bypass.html

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 31. Publication date: January 2025.

https://doi.org/10.1145/3385412.3385970
https://doi.org/10.1109/SP46214.2022.9833707
https://doi.org/10.1109/CSF.2019.00027
https://doi.org/10.1109/CSF.2019.00027
https://doi.org/10.1007/978-3-030-54997-8_21
https://doi.org/10.1007/978-3-030-54997-8_21
https://doi.org/10.1109/SP.2019.00047
https://doi.org/10.1109/CSF54842.2022.9919680
https://doi.org/10.1145/3548606.3560555
https://github.com/XFabian/secure_comp_lifting
https://github.com/XFabian/secure_comp_lifting
https://arxiv.org/abs/2405.10089
https://arxiv.org/abs/2405.10089
https://doi.org/10.1145/1275497.1275500
http://dl.acm.org/citation.cfm?id=959088.959090
https://doi.org/10.1145/3372297.3417246
https://doi.org/10.1109/SP40001.2021.00036
https://doi.org/10.1109/SP40001.2021.00036
https://doi.org/10.1109/SP40000.2020.00011
https://doi.org/10.1145/3377811.3380428
https://doi.org/10.1145/3062341.3062363
https://doi.org/10.1145/3062341.3062363
https://doi.org/10.1145/3634737.3637662
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
https://www.intel.com/content/dam/develop/external/us/en/documents/retpoline-a-branch-target-injection-mitigation.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/retpoline-a-branch-target-injection-mitigation.pdf
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/speculative-store-bypass.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/advisory-guidance/speculative-store-bypass.html

Do You Even Lift? Strengthening Compiler Security Guarantees against Spectre Attacks 31:29

[38] Intel. 2018. Using Intel Compilers to Mitigate Speculative Execution Side-Channel Issues. https://software.intel.com/en-
us/articles/using-intel-compilers-to-mitigate-speculative-execution-side-channel-issues

[39] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz Lipp, Stefan
Mangard, Thomas Prescher, Michael Schwarz, and Yuval Yarom. 2019. Spectre Attacks: Exploiting Speculative Execution.
In Proceedings of the 40th IEEE Symposium on Security and Privacy (S&P ’19). https://doi.org/10.1109/SP.2019.00002

[40] Paul C. Kocher. 1996. Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems. In Advances
in Cryptology (CRYPTO ’96), Neal Koblitz (Ed.). Springer Berlin Heidelberg. https://doi.org/10.1007/3-540-68697-5_9

[41] Esmaeil Mohammadian Koruyeh, Khaled N. Khasawneh, Chengyu Song, and Nael Abu-Ghazaleh. 2018. Spectre
Returns! Speculation Attacks Using the Return Stack Buffer. In Proceedings of the 12th USENIX Workshop on Offensive
Technologies (WOOT ’18). USENIX Association. https://www.usenix.org/conference/woot18/presentation/koruyeh

[42] Matthis Kruse and Marco Patrignani. 2022. Composing Secure Compilers.
[43] Giorgi Maisuradze and Christian Rossow. 2018. Ret2spec: Speculative Execution Using Return Stack Buffers. In

Proceedings of the 25th ACM SIGSAC Conference on Computer and Communications Security (CCS ’18). ACM. https:
//doi.org/10.1145/3243734.3243761

[44] N. Mosier, H. Nemati, J. C. Mitchell, and C. Trippel. 2024. Serberus: Protecting Cryptographic Code from Spectres at
Compile-Time. In Proceedings of the 45th IEEE Symposium on Security and Privacy (S&P ’24). IEEE. https://doi.org/10.
1109/SP54263.2024.00048

[45] Shravan Narayan, Craig Disselkoen, Daniel Moghimi, Sunjay Cauligi, Evan Johnson, Zhao Gang, Anjo Vahldiek-
Oberwagner, Ravi Sahita, Hovav Shacham, Dean Tullsen, and Deian Stefan. 2021. Swivel: Hardening WebAssembly
against Spectre. In Proceedings of the 30th USENIX Security Symposium (USENIX Security ’21). USENIX Association.
https://www.usenix.org/conference/usenixsecurity21/presentation/narayan

[46] Oleksii Oleksenko, Marco Guarnieri, Boris Köpf, and Mark Silberstein. 2023. Hide and Seek with Spectres: Efficient
discovery of speculative information leaks with random testing. In Proceedings of the 44th IEEE Symposium on Security
and Privacy (S&P 2023). IEEE. https://doi.org/10.1109/SP46215.2023.10179391

[47] Marco Patrignani. 2020. Why should anyone use colours? or, syntax highlighting beyond code snippets. arXiv preprint
arXiv:2001.11334 (2020).

[48] Marco Patrignani and Sam Blackshear. 2023. Robust Safety for Move. In Proceedings of the 36th IEEE Computer Security
Foundations Symposium (CSF ’23). IEEE. https://doi.org/10.1109/CSF57540.2023.00045

[49] Marco Patrignani and Marco Guarnieri. 2021. Exorcising Spectres with Secure Compilers. In Proceedings of the 28th
ACM Conference on Computer and Communications Security (CCS ’21). ACM. https://doi.org/10.1145/3460120.3484534

[50] Hernán Ponce de León and Johannes Kinder. 2022. Cats vs. Spectre: An Axiomatic Approach to Modeling Speculative
Execution Attacks. In Proceedings of the 43rd IEEE Symposium on Security and Privacy (S&P ’22). IEEE. https:
//doi.org/10.1109/SP46214.2022.9833774

[51] Michael Sammler, Deepak Garg, Derek Dreyer, and Tadeusz Litak. 2020. The high-level benefits of low-level sandboxing.
Proc. ACM Program. Lang. (2020). https://doi.org/10.1145/3371100

[52] Vedvyas Shanbhogue, Deepak Gupta, and Ravi Sahita. 2019. Security Analysis of Processor Instruction Set Architecture
for Enforcing Control-Flow Integrity. In Proceedings of the 8th International Workshop on Hardware and Architectural
Support for Security and Privacy (HASP ’19). ACM. https://doi.org/10.1145/3337167.3337175

[53] B. Shivakumar, G. Barthe, B. Gregoire, V. Laporte, T. Oliveira, S. Priya, P. Schwabe, and L. Tabary-Maujean. 2023.
Typing High-Speed Cryptography against Spectre v1. In Proceedings of the 44th IEEE Symposium on Security and
Privacy (S&P ’23). IEEE. https://doi.org/10.1109/SP46215.2023.10179418

[54] Basavesh Ammanaghatta Shivakumar, Jack Barnes, Gilles Barthe, Sunjay Cauligi, Chitchanok Chuengsatiansup, Daniel
Genkin, Sioli O’Connell, Peter Schwabe, Rui Qi Sim, and Yuval Yarom. 2023. Spectre Declassified: Reading from the
Right Place at the Wrong Time. In Proceedings of the 44th IEEE Symposium on Security and Privacy (S&P ’23). IEEE.
https://doi.org/10.1109/SP46215.2023.10179355

[55] David Swasey, Deepak Garg, and Derek Dreyer. 2017. Robust and Compositional Verification of Object Capability
Patterns. In Proceedings of the 2017 ACM SIGPLAN International Conference on Object-Oriented Programming, Systems,
Languages, and Applications. (OOPSLA ’17). ACM. https://doi.org/10.1145/3133913

[56] Marco Vassena, Craig Disselkoen, Klaus von Gleissenthall, Sunjay Cauligi, Rami Gökhan Kıcı, Ranjit Jhala, Dean
Tullsen, and Deian Stefan. 2021. Automatically Eliminating Speculative Leaks from Cryptographic Code with Blade.
Proc. ACM Program. Lang. (2021). https://doi.org/10.1145/3434330

[57] Johannes Wikner, Daniël Trujillo, and Kaveh Razavi. 2023. Phantom: Exploiting Decoder-detectable Mispredictions. In
Proceedings of the 56th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO ’23). ACM. https:
//doi.org/10.1145/3613424.3614275

[58] Tao Zhang, Kenneth Koltermann, and Dmitry Evtyushkin. 2020. Exploring Branch Predictors for Constructing
Transient Execution Trojans. In Proceedings of the 25th International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS ’20). ACM. https://doi.org/10.1145/3373376.3378526

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 31. Publication date: January 2025.

https://software.intel.com/en-us/articles/using-intel-compilers-to-mitigate-speculative-execution-side-channel-issues
https://software.intel.com/en-us/articles/using-intel-compilers-to-mitigate-speculative-execution-side-channel-issues
https://doi.org/10.1109/SP.2019.00002
https://doi.org/10.1007/3-540-68697-5_9
https://www.usenix.org/conference/woot18/presentation/koruyeh
https://doi.org/10.1145/3243734.3243761
https://doi.org/10.1145/3243734.3243761
https://doi.org/10.1109/SP54263.2024.00048
https://doi.org/10.1109/SP54263.2024.00048
https://www.usenix.org/conference/usenixsecurity21/presentation/narayan
https://doi.org/10.1109/SP46215.2023.10179391
https://doi.org/10.1109/CSF57540.2023.00045
https://doi.org/10.1145/3460120.3484534
https://doi.org/10.1109/SP46214.2022.9833774
https://doi.org/10.1109/SP46214.2022.9833774
https://doi.org/10.1145/3371100
https://doi.org/10.1145/3337167.3337175
https://doi.org/10.1109/SP46215.2023.10179418
https://doi.org/10.1109/SP46215.2023.10179355
https://doi.org/10.1145/3133913
https://doi.org/10.1145/3434330
https://doi.org/10.1145/3613424.3614275
https://doi.org/10.1145/3613424.3614275
https://doi.org/10.1145/3373376.3378526

31:30 Xaver Fabian, Marco Patrignani, Marco Guarnieri, and Michael Backes

[59] Zhiyuan Zhang, Gilles Barthe, Chitchanok Chuengsatiansup, Peter Schwabe, and Yuval Yarom. 2023. Ultimate SLH:
taking speculative load hardening to the next level. In Proceedings of the 32nd USENIX Conference on Security Symposium
(USENIX Security ’23). USENIX Association. https://www.usenix.org/conference/usenixsecurity23/presentation/zhang-
zhiyuan-slh

Received 2024-07-11; accepted 2024-11-07

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 31. Publication date: January 2025.

https://www.usenix.org/conference/usenixsecurity23/presentation/zhang-zhiyuan-slh
https://www.usenix.org/conference/usenixsecurity23/presentation/zhang-zhiyuan-slh

	Abstract
	1 Introduction
	2 Language Formalisation: uASM, Speculative Semantics, and Their Combinations
	2.1 Attacker Model
	2.2 Syntax and Semantics of uASM
	2.3 Speculative Semantics
	2.4 Combining Speculative Semantics
	2.5 Leakage Ordering

	3 Security Notions
	3.1 Robustness
	3.2 Security Notions for Whole Programs
	3.3 Secure Compilation Criteria
	3.4 Well-Formed Compositions and Compilers

	4 Lifting Compiler Guarantees
	4.1 Lifting Theorem
	4.2 Syntactic Independence: Independence for Free
	4.3 Trapped Speculation: Fulfilling Safe Nesting

	5 Countermeasures Analysis
	5.1 The Compilers
	5.2 Security of the Compilers
	5.3 Independence of the Compilers
	5.4 Safe Nesting of the Compilers
	5.5 Lifting Security Guarantees

	6 Discussion
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

